Mouse Physiology Core C is a service core with the purpose of allowing the DDBRTCC Research Base to advance understanding of digestive diseases using mouse models to study physiology and pathophysiology. The Core services are meant to increase the ease and efficiency of studying mouse models, which include transgenic and knock out models including those in which colitis and small intestinal disease occur. In addition, this Core will help our Associate Members who lack experience in using mouse models and have small laboratories, making the labor intensive study of mouse models difficult. The services offered include 1) Advice on establishing and maintaining mouse colonies, including how to breed onto uniform backgrounds;2) Genotyping by PCR, which includes developing and optimizing primers;3) Histological services, which include in vivo paraformaldehyde perfusion for tissue fixation, tissue processing, embedding, sectioning (including cryosectioning), some staining including H&E and PAS, advise on IF. A tissue bank of H &E slides of GI organs ofthe mouse models studied by our Research Base are made available for other Core members to use for preliminary studies;4) Ussing chamber/voltage clamp technology for measuring active ion transport and tight junction permeability and permselectivity is available as is instruction in its use and in calculation ofthe results;5) Metabolic cages are available as is instruction in help in how to use them for metabolic balance studies, including help in blood, urine, stool collections. Three new services are proposed for addition: 1) An experienced mouse pathologist will help review the GI pathology of mouse models, including basal states of transgenic and knock out mice as well as disease models which affect the GI tract;2) A cjrtokine multiplex ELISA assay to analyze cytokine protein levels from human and mice;and 3) a FACS technician to perform analyses for our Research Base members who use similar epithelial and immunologic cells, to increase efficiency and quality control.

Public Health Relevance

The DDBTRCC Mouse Physiology Core is a service Core that has the purpose of helping our Research Base members study mouse models to increase understanding ofthe physiology and pathophysiology of digestive diseases.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-8)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
United States
Zip Code
Llosa, Nicolas J; Cruise, Michael; Tam, Ada et al. (2015) The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 5:43-51
Cha, Boyoung; Chen, Tiane; Sarker, Rafiquel et al. (2014) Lysophosphatidic acid stimulation of NHE3 exocytosis in polarized epithelial cells occurs with release from NHERF2 via ERK-PLC-PKC? signaling. Am J Physiol Cell Physiol 307:C55-65
Gabelli, Sandra B; Boto, Agedi; Kuhns, Victoria Halperin et al. (2014) Regulation of the NaV1.5 cytoplasmic domain by calmodulin. Nat Commun 5:5126
Miller, Michelle S; Schmidt-Kittler, Oleg; Bolduc, David M et al. (2014) Structural basis of nSH2 regulation and lipid binding in PI3K?. Oncotarget 5:5198-208
Yang, Jianbo; Singh, Varsha; Chen, Tian-E et al. (2014) NHERF2/NHERF3 protein heterodimerization and macrocomplex formation are required for the inhibition of NHE3 activity by carbachol. J Biol Chem 289:20039-53
Singh, Varsha; Yang, Jianbo; Chen, Tiane-e et al. (2014) Translating molecular physiology of intestinal transport into pharmacologic treatment of diarrhea: stimulation of Na+ absorption. Clin Gastroenterol Hepatol 12:27-31
Singh, Varsha; Lin, Rong; Yang, Jianbo et al. (2014) AKT and GSK-3 are necessary for direct ezrin binding to NHE3 as part of a C-terminal stimulatory complex: role of a novel Ser-rich NHE3 C-terminal motif in NHE3 activity and trafficking. J Biol Chem 289:5449-61
Chen, Tiane; Hubbard, Ann; Murtazina, Rakhilya et al. (2014) Myosin VI mediates the movement of NHE3 down the microvillus in intestinal epithelial cells. J Cell Sci 127:3535-45
Foulke-Abel, Jennifer; In, Julie; Kovbasnjuk, Olga et al. (2014) Human enteroids as an ex-vivo model of host-pathogen interactions in the gastrointestinal tract. Exp Biol Med (Maywood) 239:1124-34
Herbrich, Shelley M; Cole, Robert N; West Jr, Keith P et al. (2013) Statistical inference from multiple iTRAQ experiments without using common reference standards. J Proteome Res 12:594-604

Showing the most recent 10 out of 12 publications