Non-small cell lung cancers (NSCLCs), particularly those harboring certain EGFR or K-RAS mutations, are often unresponsive to molecularly targeted agents and have a poor prognosis. Mucin 1 (MUC1) is a transmembrane glycoprotein that is overexpressed in most NSCLCs. However, it is not known if MUC1 is of importance to NSCLC cell growth and survival. In this regard, there are no available genetically-engineered mouse models to study MUC1 involvement in NSCLC initiation, progression or maintenance. MUC1 consists of two subunits~ an N-terminal extracellular mucin subunit (MUC1-N) and a C- terminal oncogenic transmembrane subunit (MUC1-C). The MUC1-C cytoplasmic domain functions as a substrate for EGFR and MET, and interacts with effectors, such as PI3K, that have been linked to NSCLC development. Overexpression of MUC1-C induces transformation and associated gene signatures that are predictive of decreased disease-free and overall survival in NSCLC patients. Moreover, inhibition of the MUC1-C subunit in NSCLC cells is associated with downregulation of the PI3K->AKT pathway and loss of survival. The overall objective of the proposed work is to define the functional role of MUC1-C in NSCLC. Our hypothesis is that MUC1-C contributes to the pathogenesis of NSCLC and that MUC1-C function is essential for survival of NSCLC cells with EGFR and K-RAS mutations. The proposed work will address this hypothesis in a new MUC1-C-driven mouse model of NSCLC and through the use of recently developed MUC1-C inhibitors. The theoretical concept that MUC1-C is a target for the treatment of NSCLC is novel and could shift current research and clinical paradigms.
The Specific Aims are: (1) To define involvement of MUC1-C in development of NSCLC in mouse models~ (2) To assess the role of MUC1-C in NSCLC with EGFR mutations~ (3) To determine whether MUC1-C is of importance to development of K-RAS mutant NSCLC~ and (4) To identify how MUC1-C contributes to NSCLC cell survival.

Public Health Relevance

Lung cancer is the leading cause of cancer-related deaths in the United States. The MUC1-C oncoprotein is expressed at high levels in most non-small cell lung cancer (NSCLC) cells. Our proposed research focuses on the functional role of MUC1-C in NSCLC and the concept that MUC1-C is a novel target for the treatment of this disease.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Tumor Cell Biology Study Section (TCB)
Program Officer
Salnikow, Konstantin
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dana-Farber Cancer Institute
United States
Zip Code
Tagde, Ashujit; Rajabi, Hasan; Stroopinsky, Dina et al. (2016) MUC1-C induces DNA methyltransferase 1 and represses tumor suppressor genes in acute myeloid leukemia. Oncotarget 7:38974-38987
Hasegawa, Masanori; Takahashi, Hidekazu; Rajabi, Hasan et al. (2016) Functional interactions of the cystine/glutamate antiporter, CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells. Oncotarget 7:11756-69
Hiraki, Masayuki; Suzuki, Yozo; Alam, Maroof et al. (2016) MUC1-C Stabilizes MCL-1 in the Oxidative Stress Response of Triple-Negative Breast Cancer Cells to BCL-2 Inhibitors. Sci Rep 6:26643
Koyama, Shohei; Akbay, Esra A; Li, Yvonne Y et al. (2016) Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 7:10501
Hiraki, M; Maeda, T; Bouillez, A et al. (2016) MUC1-C activates BMI1 in human cancer cells. Oncogene :
Mikse, Oliver R; Tchaicha, Jeremy H; Akbay, Esra A et al. (2016) The impact of the MYB-NFIB fusion proto-oncogene in vivo. Oncotarget 7:31681-8
Zhang, Haikuo; Qi, Jun; Reyes, Jaime M et al. (2016) Oncogenic Deregulation of EZH2 as an Opportunity for Targeted Therapy in Lung Cancer. Cancer Discov 6:1006-21
Rajabi, H; Tagde, A; Alam, M et al. (2016) DNA methylation by DNMT1 and DNMT3b methyltransferases is driven by the MUC1-C oncoprotein in human carcinoma cells. Oncogene 35:6439-6445
Herter-Sprie, Grit S; Koyama, Shohei; Korideck, Houari et al. (2016) Synergy of radiotherapy and PD-1 blockade in Kras-mutant lung cancer. JCI Insight 1:e87415
Alam, Maroof; Bouillez, Audrey; Tagde, Ashujit et al. (2016) MUC1-C Represses the Crumbs Complex Polarity Factor CRB3 and Downregulates the Hippo Pathway. Mol Cancer Res 14:1266-1276

Showing the most recent 10 out of 48 publications