We have recently demonstrated that the bitter taste receptor T2R38 is expressed in the upper airway and is activated by acyl-homoserine lactones (AHLs): quorum-sensing molecules secreted by Pseudomonas aeruginosa and other gram-negative bacteria. Furthermore, we found that T2R38 regulates human upper airway innate defenses through nitric oxide production, which stimulates mucociliary clearance and has direct antibacterial effects. Moreover, common polymorphisms of the TAS2R38 gene, correlating with taste sensitivity to the molecule PTC, are linked to significant differences in the ability of uppe respiratory cells to clear and kill bacteria in response to AHLs. Based on these results, our central hypothesis is that the bitter taste receptor T2R38 expressed in the upper respiratory epithelium constitutes a sentinel defense network for the detection and clearance of microbes and that genetic variation in T2R38 contributes to individual differences in airway defensive capabilities. To test this hypothesis, we will: (1) determine whether TAS2R38 genotype, PTC taste sensitivity, and allele-specific expression correlate with symptom severity, disease burden, and interventional outcomes of chronic rhinosinusitis (CRS), and whether TAS2R38 polymorphisims not activated by AHLs are overrepresented in a cohort of CRS patient, and (2) identify other micorbial products that activate the common genetic variants of TAS2R38. The goal of these aims is to determine the role the bitter taste receptor T2R38 plays in upper airway defense and how common polymorphisms of this receptor contribute to upper airway disease. Furthermore, we will determine whether bitter taste sensitivity can be used as an indicator for disease severity in patients with chronic rhinosinusitis, and whether pharmacologic manipulation of this pathway has therapeutic potential.

Public Health Relevance

All people inhale harmful bacteria through the nose. In some, this results in respiratory infections. We propose that the bitter taste receptor T2R38 expressed in the airway senses bitter chemicals secreted by bacteria. When stimulated, this receptor triggers an antimicrobial response and eradicates the offending microbes. Thus, genetic differences in bitter taste receptor functionality may contribute to differences in the predisposition to airway infections.

National Institute of Health (NIH)
National Institute on Deafness and Other Communication Disorders (NIDCD)
Research Project (R01)
Project #
Application #
Study Section
Somatosensory and Chemosensory Systems Study Section (SCS)
Program Officer
Sullivan, Susan L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
Schools of Medicine
United States
Zip Code
Adappa, Nithin D; Farquhar, Douglas; Palmer, James N et al. (2016) TAS2R38 genotype predicts surgical outcome in nonpolypoid chronic rhinosinusitis. Int Forum Allergy Rhinol 6:25-33
Douglas, Jennifer E; Saunders, Cecil J; Reed, Danielle R et al. (2016) A role for airway taste receptor modulation in the treatment of upper respiratory infections. Expert Rev Respir Med 10:157-70
Hariri, Benjamin M; Cohen, Noam A (2016) New insights into upper airway innate immunity. Am J Rhinol Allergy 30:319-23
Lee, Robert J; Workman, Alan D; Carey, Ryan M et al. (2016) Fungal Aflatoxins Reduce Respiratory Mucosal Ciliary Function. Sci Rep 6:33221
Cottrill, Elizabeth E; Chen, Bei; Adappa, Nithin D et al. (2016) Expression of dermcidin in human sinonasal secretions. Int Forum Allergy Rhinol :
Carey, Ryan M; Adappa, Nithin D; Palmer, James N et al. (2016) Taste Receptors: Regulators of Sinonasal Innate Immunity. Laryngoscope Investig Otolaryngol 1:88-95
Adappa, Nithin D; Workman, Alan D; Hadjiliadis, Denis et al. (2016) T2R38 genotype is correlated with sinonasal quality of life in homozygous ΔF508 cystic fibrosis patients. Int Forum Allergy Rhinol 6:356-61
Carey, Ryan M; Workman, Alan D; Chen, Bei et al. (2015) Staphylococcus aureus triggers nitric oxide production in human upper airway epithelium. Int Forum Allergy Rhinol 5:808-13
Workman, Alan D; Palmer, James N; Adappa, Nithin D et al. (2015) The Role of Bitter and Sweet Taste Receptors in Upper Airway Immunity. Curr Allergy Asthma Rep 15:72
Stevens, Whitney W; Lee, Robert J; Schleimer, Robert P et al. (2015) Chronic rhinosinusitis pathogenesis. J Allergy Clin Immunol 136:1442-53

Showing the most recent 10 out of 12 publications