Pancreatitis is associated with significant morbidity and mortality. Unfortunately, there are currently no effective therapies for this disease. This is largely because the molecular mechanisms that determine the severity of this disease remain poorly understood. Knowledge of these mechanisms has been hampered by the lack of well-defined animal models. In the current proposal, we will utilize novel transgenic animal models that we have recently developed based on acinar cell specific expression of a tamoxifen-regulated Cre recombinase that is used to activate or delete genes that directly regulate pancreatitis severity. These are the first animal models of pancreatitis in which the molecular initiating events are clearly defined. The overall aims of this proposal are to test specific mechanistic hypotheses using these unique models.
Specific aim #1 involves the regulated expression of components of the NF?B signaling pathway. Despite much evidence that NF?B is a critical mediator of pancreatitis, many important questions remain about its specific actions in the disease. We will directly examine the role of NF?B by regulating the expression of molecules that will either activate (p65/relA over-expression) or inhibit (l??-? deletion or I?B? expression) NF?B specifically in pancreatic acinar cells. We will test several mechanistic hypotheses concerning the roles of acinar cell NF?B activation in the inflammatory cascade, acinar cell apoptosis and necrosis, and pancreatic regeneration associated with acute pancreatitis.
Specific aim #2 is based on regulated expression of mutant active K-ras(G12V) in pancreatic acinar cells. While activated K-ras is generally associated with pancreatic cancer, we have observed that its expression in acinar cells within the pancreas of transgenic animals leads to a dramatic loss of acinar cells and abundant fibrosis resembling human chronic pancreatitis. We will utilize this unique animal model to identify the specific molecular mechanisms whereby K-ras activity causes acinar cell damage and influences stellate cells to produce fibrosis. To complement the studies in transgenic mice and to insure that the mechanisms being investigated are relevant to human disease, we will also conduct studies in vitro using viral vectors to express genes in human and rodent acinar cells. Together these studies will provide insights into the mechanisms of acute pancreatitis that have not previously been possible and which may lead to improved therapies.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-DIG-C (02))
Program Officer
Serrano, Jose
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas MD Anderson Cancer Center
Other Domestic Higher Education
United States
Zip Code
Gomez-Chou, Sobeyda B; Swidnicka-Siergiejko, Agnieszka Katarzyna; Badi, Niharika et al. (2017) Lipocalin-2 Promotes Pancreatic Ductal Adenocarcinoma by Regulating Inflammation in the Tumor Microenvironment. Cancer Res 77:2647-2660
Swidnicka-Siergiejko, A K; Gomez-Chou, S B; Cruz-Monserrate, Z et al. (2017) Chronic inflammation initiates multiple forms of K-Ras-independent mouse pancreatic cancer in the absence of TP53. Oncogene 36:3149-3158
Gaziova, Ivana; Jackson, Daniel; Boor, Paul J et al. (2016) The MET Receptor Tyrosine Kinase Confers Repair of Murine Pancreatic Acinar Cells following Acute and Chronic Injury. PLoS One 11:e0165485
Logsdon, Craig D; Lu, Weiqin (2016) The Significance of Ras Activity in Pancreatic Cancer Initiation. Int J Biol Sci 12:338-46
Logsdon, Craig D; Arumugam, Thiruvengadam; Ramachandran, Vijaya (2015) Animal Models of Gastrointestinal and Liver Diseases. The difficulty of animal modeling of pancreatic cancer for preclinical evaluation of therapeutics. Am J Physiol Gastrointest Liver Physiol 309:G283-91
Fu, Yong; Cruz-Monserrate, Zobeida; Helen Lin, H et al. (2015) Ductal activation of oncogenic KRAS alone induces sarcomatoid phenotype. Sci Rep 5:13347
Cruz-Monserrate, Zobeida; Roland, Christina L; Deng, Defeng et al. (2014) Targeting pancreatic ductal adenocarcinoma acidic microenvironment. Sci Rep 4:4410
Huang, H; Daniluk, J; Liu, Y et al. (2014) Oncogenic K-Ras requires activation for enhanced activity. Oncogene 33:532-5
Roland, Christina L; Arumugam, Thiruvengadam; Deng, Defeng et al. (2014) Cell surface lactate receptor GPR81 is crucial for cancer cell survival. Cancer Res 74:5301-10
Charo, Chantale; Holla, Vijaykumar; Arumugam, Thiruvengadam et al. (2013) Prostaglandin E2 regulates pancreatic stellate cell activity via the EP4 receptor. Pancreas 42:467-74

Showing the most recent 10 out of 40 publications