Receptor tyrosine kinases are important regulatory proteins that control many aspects of cellular metabolism, growth, and differentiation. Many extracellular signaling molecules are known to exert their effects on cell regulation by binding to these receptors. The ultimate objective of the proposed research is to understand the molecular mechanisms that receptor tyrosine kinases use to regulate cellular behavior. This could provide important insights into how these cellular processes are regulated and coordinated, and how inappropriate activation of receptor tyrosine kinases can lead to neoplastic transformation of cells. In order to address this question, we study the differentiation of a photoreceptor cell in the Drosophila eye that is regulated by a receptor tyrosine kinase, the product of the seven less gene. Activation of the seven less receptor results in a single cell to develop as a R7 photoreceptor rather than a non-neuronal cell. The activation of Sevenless serves as a switch that induces expression of the phyllopod gene in the presumptive R7 cell. phyllopod encodes a nuclear protein required for fate determination of the R7 photoreceptor. In previous work, we studied the seven in absentia (sina) gene and found that it also plays a central role in the decision process that is regulated by Sevenless. sina encodes a nuclear protein that is expressed ubiquitously in the eye. Our studies have demonstrated that the Sina and Phyllopod proteins specifically associate to form a complex in vitro. This suggests that both proteins directly interact in presumptive R7 cells, and that the complex is active in regulating R7-specific gene expression. We have conducted a genetic screen for mutations that attenuate sina activity and identified 33 genes. We have characterized one of these genes in detail. The prospero gene becomes transcriptionally activated at a low level in all Sevenless-competent cells prior to Sevenless signaling. This requires activation of the EGF receptor tyrosine kinase. Restriction of high-level prospero transcription to R7 cells appears as a subsequent event, which requires Sevenless activation. Our results suggest that both transcriptional responses are linked to activation of the Ras signal transduction pathway that operates downstream of both receptor tyrosine kinases.
The aims of the proposed research are to: (l) biochemically characterize Sina and Phyllopod proteins; (2) conduct molecular characterization of two more genes; (3) uncover the molecular mechanism by which receptor activation of Ras 1 results in two distinct transcriptional responses by the prospero gene.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY010111-07
Application #
2882905
Study Section
Genetics Study Section (GEN)
Project Start
1993-03-01
Project End
2002-02-28
Budget Start
1999-03-01
Budget End
2000-02-29
Support Year
7
Fiscal Year
1999
Total Cost
Indirect Cost
Name
University of Pittsburgh
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
053785812
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Zheng, Limin; Carthew, Richard W (2008) Lola regulates cell fate by antagonizing Notch induction in the Drosophila eye. Mech Dev 125:18-29
Hayashi, Takashi; Xu, Chunyan; Carthew, Richard W (2008) Cell-type-specific transcription of prospero is controlled by combinatorial signaling in the Drosophila eye. Development 135:2787-96
Xu, C; Kauffmann, R C; Zhang, J et al. (2000) Overlapping activators and repressors delimit transcriptional response to receptor tyrosine kinase signals in the Drosophila eye. Cell 103:87-97
Kennerdell, J R; Carthew, R W (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95:1017-26
Zhang, J; Carthew, R W (1998) Interactions between Wingless and DFz2 during Drosophila wing development. Development 125:3075-85
Li, S; Li, Y; Carthew, R W et al. (1997) Photoreceptor cell differentiation requires regulated proteolysis of the transcriptional repressor Tramtrack. Cell 90:469-78
Kauffmann, R C; Li, S; Gallagher, P A et al. (1996) Ras1 signaling and transcriptional competence in the R7 cell of Drosophila. Genes Dev 10:2167-78
Kauffmann, R C; Qian, Y; Vogt, A et al. (1995) Activated Drosophila Ras1 is selectively suppressed by isoprenyl transferase inhibitors. Proc Natl Acad Sci U S A 92:10919-23
Carthew, R W; Neufeld, T P; Rubin, G M (1994) Identification of genes that interact with the sina gene in Drosophila eye development. Proc Natl Acad Sci U S A 91:11689-93