This project proposes that prior to retinal ganglion cell (RGC) death in glaucoma, and before permanent loss of vision, there exists a stage of RGC dysfunction characterized by degradation of axonal microtubules (MTs). Emerging evidence suggests that MT degradation can occur initially without substantial changes in axonal caliber. Therefore, it is proposed that early stage RGC dysfunction involving MT degradation should be preferentially detectable by scanning laser polarimetry (SLP) of the retinal nerve fiber layer (RNFL) prior to changes in RNFL thickness. This is because the fundamental optical principle of SLP is based on detecting phase retardance of polarized light, which is due to the optical property birefringence produced in the RNFL by the long, thin cylindrical MTs. Preliminary studies demonstrate that RNFL retardance declines prior to, and faster than RNFL thickness in several different experimental models of RGC injury, including experimental glaucoma (EG). Clinical detection of axonal MT disruption by SLP, in the absence of RNFL thickness changes, might represent an early and potentially reversible phase of glaucomatous damage and provide a clinically detectable marker for therapeutic adjustment. Thus the central hypothesis of this proposal is that disruption of MTs within the axons of the peripapillary RNFL is an early indicator of glaucomatous damage, preceding both changes in axonal caliber and physical loss of those axons. Predictions arising from this hypothesis are tested in three Specific Aims using a non-human primate (NHP) model of EG.
Specific Aim 1 : To test the prediction that peripapillary RNFL retardance will decline prior to RNFL thickness changes measured by spectral domain optical coherence tomography (sd-OCT) and prior to optic nerve head (ONH) surface changes measured by confocal scanning laser tomography (CSLT) in NHP eyes with EG;
Specific Aim 2 : To test the predictions that histological evidence of peripapillary RNFL MT disruption will be more pronounced than histologically-defined RNFL thickness changes and retrobulbar optic nerve axon loss;
Specific Aim 3 : To test the prediction that RGC functional abnormalities are associated with the intermediate stage of RGC degeneration characterized by abnormal axonal MTs. To achieve these Aims, EG will be induced via laser photocoagulation of the trabecular meshwork to cause moderate, unilateral chronic IOP elevation in 24 NHPs. Weekly measurements of peripapillary RNFL retardance, RNFL thickness and ONH surface topography will be made in both eyes of each NHP using SLP, sd-OCT and CSLT, respectively, during a 4-week pre-laser baseline period and for up to 8 months after onset of EG (Aim 1). For each parameter, statistically significant change is defined as any change exceeding the baseline intersession variability for each individual eye, twice confirmed. Once each animal progresses to its endpoint, it is sacrificed for histological data collection and analysis (Aim 2). During each week of in vivo structural testing for Aim 1, RGC function will also be assessed in both eyes using three proven forms of electroretinography (Aim 3).

Public Health Relevance

Glaucoma is one of the most common causes of blindness in the United States and around the world. It is a chronic disease with no known cure, but prospective longitudinal trials have found that treatment to lower intraocular pressure decreases the rate of progressive vision loss. Thus, early diagnosis enables timely therapeutic intervention and reduces the overall impact of glaucoma. However, achieving a timely diagnosis requires clinical detection of the onset and progression of glaucomatous damage to the optic nerve head (ONH) and retinal nerve fiber layer (RNFL), which remain a central challenge in the clinical care of every glaucoma patient. This project evaluates and advances clinical tools for detecting early damage and progression of glaucoma.

National Institute of Health (NIH)
National Eye Institute (NEI)
Research Project (R01)
Project #
Application #
Study Section
Anterior Eye Disease Study Section (AED)
Program Officer
Agarwal, Neeraj
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emanuel Hospital and Health Center
United States
Zip Code
Wilsey, Laura; Gowrisankaran, Sowjanya; Cull, Grant et al. (2017) Comparing three different modes of electroretinography in experimental glaucoma: diagnostic performance and correlation to structure. Doc Ophthalmol 134:111-128
Wilsey, Laura J; Reynaud, Juan; Cull, Grant et al. (2016) Macular Structure and Function in Nonhuman Primate Experimental Glaucoma. Invest Ophthalmol Vis Sci 57:1892-900
Hood, Donald C; De Cuir, Nicole; Mavrommatis, Maria A et al. (2016) Defects Along Blood Vessels in Glaucoma Suspects and Patients. Invest Ophthalmol Vis Sci 57:1680-6
Fortune, Brad; Hardin, Christy; Reynaud, Juan et al. (2016) Comparing Optic Nerve Head Rim Width, Rim Area, and Peripapillary Retinal Nerve Fiber Layer Thickness to Axon Count in Experimental Glaucoma. Invest Ophthalmol Vis Sci 57:OCT404-12
Fortune, Brad; Reynaud, Juan; Hardin, Christy et al. (2016) Experimental Glaucoma Causes Optic Nerve Head Neural Rim Tissue Compression: A Potentially Important Mechanism of Axon Injury. Invest Ophthalmol Vis Sci 57:4403-11
Gardiner, Stuart K; Fortune, Brad; Demirel, Shaban (2016) Localized Changes in Retinal Nerve Fiber Layer Thickness as a Predictor of Localized Functional Change in Glaucoma. Am J Ophthalmol 170:75-82
Gardiner, Stuart K; Demirel, Shaban; Reynaud, Juan et al. (2016) Changes in Retinal Nerve Fiber Layer Reflectance Intensity as a Predictor of Functional Progression in Glaucoma. Invest Ophthalmol Vis Sci 57:1221-7
Morrison, John C; Cepurna, William O; Tehrani, Shandiz et al. (2016) A Period of Controlled Elevation of IOP (CEI) Produces the Specific Gene Expression Responses and Focal Injury Pattern of Experimental Rat Glaucoma. Invest Ophthalmol Vis Sci 57:6700-6711
Wilsey, Laura J; Fortune, Brad (2016) Electroretinography in glaucoma diagnosis. Curr Opin Ophthalmol 27:118-24
Fortune, Brad (2015) In vivo imaging methods to assess glaucomatous optic neuropathy. Exp Eye Res 141:139-53

Showing the most recent 10 out of 23 publications