We have recently discovered that loss of organic anion transporter 3 (OAT3), but not loss of the related renal transporters OAT1 and RST (URAT1), results in decreased blood pressure in mice. This suggests that an endogenous compound(s) specifically transported by OAT3 is involved in the regulation of blood pressure, and our preliminary data indicate that both renal and vascular mechanisms may contribute. We propose in Specific Aim 1 to investigate the potential renal mechanisms. OAT3 is expressed in the renal proximal tubule, distal tubule, and collecting duct, and its endogenous substrates include suppressors of tubular NaCl transport such as PGE2. Moreover, preliminary studies show that the non-selective OAT inhibitor, probenecid, lowers the activity of the epithelial sodium channel, ENaC, in the collecting duct, and Oat3 knockout (-/-) mice manifest significantly greater weight loss in response to a low NaCl diet. These data suggest that OAT3 may contribute to upregulation of renal NaCl reabsorption and thereby to blood pressure regulation. We will perform renal cross-transplantation to differentiate roles of renal versus extra-renal OAT3, and determine differences between Oat3-/- and wild-type (+/+) mice in renal NaCl transport, ENaC activity, and the role of PGE2, so as to identify sites of impaired NaCl reabsorption and/or altered regulation.
In Specific Aim 2, we will investigate potential vascular mechanisms underlying blood pressure regulation by OAT3. We previously identified thymidine as a novel endogenous OAT3 substrate that accumulates in the plasma of Oat3-/- mice and acutely lowers blood pressure. We now propose to assess vascular tone in Oat3-/- and +/+ mice, and to determine effects of thymidine and other potentially vasoactive OAT3 substrates, including PGE2 and cGMP. Finally, since loss of OAT3 results in decreased blood pressure, pharmacological inhibition of OAT3 function might also decrease blood pressure, raising the possibility of a novel approach to the design of antihypertensive drugs. Preliminary data show that administration of non-selective OAT inhibitors can reduce blood pressure in mice with both normal and increased blood pressure. We propose in Specific Aim 3 to screen for selective OAT3 inhibitors as a means to identify novel compounds with antihypertensive potential. Specifically, we will first identify OAT3 inhibitors via iterative in silico and in vitro steps (characterize an initial set of inhibitors to generate a pharmacophore;use the pharmacophore to perform in silico screens of large chemical structure databases;test high-scoring matches from these screens for OAT3 inhibition in vitro). We will then test the most potent of the identified inhibitors for antihypertensive capacity in vivo. We provide preliminary data indicating the feasibility of these Aims (including identification of selective OAT3 inhibitors), and have enlisted the support of expert collaborators. The proposed work thus has the potential to significantly increase our understanding of mechanisms of blood pressure regulation and to thereby impact the medical treatment of hypertension.

Public Health Relevance

We have discovered that loss of a specific kidney protein (OAT3) or blocking of its function can lead to decreased blood pressure. We plan to investigate how OAT3 controls blood pressure, which could lead to a better understanding of how high blood pressure (hypertension) develops. We will also identify selective OAT3- blocking substances and explore their ability to reduce blood pressure - such substances could potentially be useful in the treatment of patients with hypertension.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-DKUS-G (02))
Program Officer
OH, Youngsuk
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Internal Medicine/Medicine
Schools of Medicine
La Jolla
United States
Zip Code
Gallo, Linda A; Ward, Micheal S; Fotheringham, Amelia K et al. (2016) Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice. Sci Rep 6:26428
Song, Panai; Onishi, Akira; Koepsell, Hermann et al. (2016) Sodium glucose cotransporter SGLT1 as a therapeutic target in diabetes mellitus. Expert Opin Ther Targets 20:1109-25
Novikov, Aleksandra; Vallon, Volker (2016) Sodium glucose cotransporter 2 inhibition in the diabetic kidney: an update. Curr Opin Nephrol Hypertens 25:50-8
Gallo, Linda A; Wright, Ernest M; Vallon, Volker (2015) Probing SGLT2 as a therapeutic target for diabetes: basic physiology and consequences. Diab Vasc Dis Res 12:78-89
Vallon, Volker (2015) The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu Rev Med 66:255-70
Eraly, Satish A; Liu, Henry C; Jamshidi, Neema et al. (2015) Transcriptome-based reconstructions from the murine knockout suggest involvement of the urate transporter, URAT1 (slc22a12), in novel metabolic pathways. Biochem Biophys Rep 3:51-61
Layton, Anita T; Vallon, Volker; Edwards, Aurélie (2015) Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition. Am J Physiol Renal Physiol 308:F1343-57
Michel, Martin C; Mayoux, Eric; Vallon, Volker (2015) A comprehensive review of the pharmacodynamics of the SGLT2 inhibitor empagliflozin in animals and humans. Naunyn Schmiedebergs Arch Pharmacol 388:801-16
Fu, Yiling; Gerasimova, Maria; Batz, Falk et al. (2015) PPAR? agonist-induced fluid retention depends on ?ENaC expression in connecting tubules. Nephron 129:68-74
Vallon, Volker; Docherty, Neil G (2014) Intestinal regulation of urinary sodium excretion and the pathophysiology of diabetic kidney disease: a focus on glucagon-like peptide 1 and dipeptidyl peptidase 4. Exp Physiol 99:1140-5

Showing the most recent 10 out of 48 publications