The fusion proteins of many enveloped viruses are activated by a proteolytic priming step. The priming event utilizes a host cell protease to make a specific cleavage in the envelope (fusion) protein, often in the immediate vicinity of the fusion peptide. Exposure of the fusion peptide is a critical part of the virus entry process, and without proteolytic priming, virus infection cannot be initiated. While proteases are important drug targets for many diseases, the targeting of host cell proteases involved in virus entry has received little attention. Host cell proteases are usually under tight regulation, and the host has evolved highly specific inhibitors, which have high affinity for their natural protease. We propose to take advantage of such natural inhibitors as a host-targeted therapeutic approach for influenza and other respiratory viruses. In the case of viral infection, it is apparent that in man cases priming is not occurring via a single protease, but rather via a sub-set of related proteases expressed in a given tissue. Thus a single natural (or modified-natural) inhibitor with some degree of broad specificity is likely to be a viable anti-viral therapeutic. As several virus families likely share the same or overlapping activating proteases, a single inhibitor is also likey to be active against a sub-set of viruses in distinct families. We have recently developed a kunitz-type protease inhibitor (SPINT2 or HAI-2) as a lead therapeutic for treatment of epidemic and pandemic influenza, as well as other enveloped viruses including paramyxoviruses. Our focus in the project will be influenza A and B viruses, as well as human metapneumovirus and human parainfluenza virus 1. We propose to characterize our lead candidate inhibitor, both in vitro and in cell culture, including primary respiratory tract cells, and to develop engineered derivates with improved potency. Given that many viruses are activated by host cell proteases, we feel this strategy is a prudent one, with our eventual goal being to develop a system that can be used to treat multiple infectious agents.

Public Health Relevance

The goal of this project is to develop host cell protease-targeted therapeutics for epidemic and pandemic influenza virus, as well as other viruses of biomedical interest. We have identified a naturally occurring kunitz-type, serine protease inhibitor (SPINT2) that inhibits influenza virus infection by targeting the host cell proteases activating the viral envelope, or fusion, protein. We propose to characterize and optimize this lead inhibitor, with the goal of developing more effective therapeutics for influenza and other respiratory pathogens.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Exploratory/Developmental Grants (R21)
Project #
5R21AI117300-02
Application #
9197959
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Krafft, Amy
Project Start
2016-01-01
Project End
2018-06-30
Budget Start
2017-01-01
Budget End
2018-06-30
Support Year
2
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Cornell University
Department
Microbiology/Immun/Virology
Type
Schools of Veterinary Medicine
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
White, Judith M; Whittaker, Gary R (2016) Fusion of Enveloped Viruses in Endosomes. Traffic 17:593-614