Reproductive development and function are complex processes requiring both extragonadal factors (e.g., FSH and LH) and intragonadal factors (e.g., steroids and peptide growth factors). Female fertility depends on the regulated allocation, growth, and maturation of oocytes, which must be coordinated with granulosa and theca cell proliferation and differentiation within the ovarian follicular unit. During this process, there are several transitions as follows: 1) Recruitment of quiescent primordial follicles to primary (one layer) follicles by an unknown mechanism; 2) Growth of the granulosa cells of the primary follicle to form two-layered and multi-layered secondary follicles; 3) Formation of antral follicles and further growth of the cells, a process which requires FSH; and 4) Transition of the antral follicle to a preovulatory follicle, in which mural granulosa cells and cumulus granulosa cells take on unique functions, a process induced by LH. Our currently funded competitive renewal (1996-present) hypothesized that the transforming growth factor p superfamily member, growth differentiation factor-9 (GDF-9), is a key oocyte-secreted factor required for transitions 2 and 4. GDF-9 mRNA and protein are specifically expressed within the oocyte beginning at the type 3a primary follicle stage and expressed through ovulation. Using GDF-9 knockout mice and recombinant mouse GDF-9, we have confirmed the above hypothesis. GDF-9 knockout mice are infertile due to a block in folliculogenesis at the primary follicle stage, and recombinant GDF-9 can substitute for the oocyte to regulate genes which are spatiotemporally expressed in the preovulatory ovarian follicle. Thus, GDF-9 is the first oocyte-secreted growth factor identified which plays multifunctional roles in the regulation of ovarian somatic cell function and gene expression. The studies described in this competitive renewal proposal will continue to use these key reagents (i.e., the GDF-9 knockout mice and recombinant GDF-9) and generate additional transgenic mouse models and reagents to further define the functions of GDF-9 and other essential regulators in granulosa cell and theca cell growth and differentiation.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Method to Extend Research in Time (MERIT) Award (R37)
Project #
5R37HD033438-13
Application #
7418712
Study Section
Reproductive Biology Study Section (REB)
Program Officer
Taymans, Susan
Project Start
1996-05-01
Project End
2011-04-30
Budget Start
2008-05-01
Budget End
2009-04-30
Support Year
13
Fiscal Year
2008
Total Cost
$337,310
Indirect Cost
Name
Baylor College of Medicine
Department
Pathology
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Balhara, Jyoti; Shan, Lianyu; Zhang, Jingbo et al. (2017) Pentraxin 3 deletion aggravates allergic inflammation through a TH17-dominant phenotype and enhanced CD4 T-cell survival. J Allergy Clin Immunol 139:950-963.e9
Fullerton Jr, Paul T; Creighton, Chad J; Matzuk, Martin M (2015) Insights Into SMAD4 Loss in Pancreatic Cancer From Inducible Restoration of TGF-? Signaling. Mol Endocrinol 29:1440-53
Peng, Jia; Fullerton Jr, Paul T; Monsivais, Diana et al. (2015) Uterine Activin-Like Kinase 4 Regulates Trophoblast Development During Mouse Placentation. Mol Endocrinol 29:1684-93
Lin, Haifan; Matzuk, Martin M (2015) Poreless eggshells. J Clin Invest 125:4005-7
Peng, Jia; Wigglesworth, Karen; Rangarajan, Adithya et al. (2014) Amino acid 72 of mouse and human GDF9 mature domain is responsible for altered homodimer bioactivities but has subtle effects on GDF9:BMP15 heterodimer activities. Biol Reprod 91:142
Peng, Jia; Li, Qinglei; Wigglesworth, Karen et al. (2013) Reply to Mottershead et al.: GDF9:BMP15 heterodimers are potent regulators of ovarian functions. Proc Natl Acad Sci U S A 110:E2258
Wigglesworth, Karen; Lee, Kyung-Bon; O'Brien, Marilyn J et al. (2013) Bidirectional communication between oocytes and ovarian follicular somatic cells is required for meiotic arrest of mammalian oocytes. Proc Natl Acad Sci U S A 110:E3723-9
Matzuk, Martin M; Burns, Kathleen H (2012) Genetics of mammalian reproduction: modeling the end of the germline. Annu Rev Physiol 74:503-28
Chen, Jianlin; Matzuk, Martin M; Zhou, Xin J et al. (2012) Endothelial pentraxin 3 contributes to murine ischemic acute kidney injury. Kidney Int 82:1195-207
Roy, Angshumoy; Matzuk, Martin M (2011) Reproductive tract function and dysfunction in women. Nat Rev Endocrinol 7:517-25

Showing the most recent 10 out of 69 publications