Embryonic development is a spectacular feat of engineering, wherein complex networks of tens of thousands of components are harnessed to achieve growth, differentiation, and patterning that is amazingly robust to intrinsic variability and extrinsic perturbation. Systems Biology is an emerging, hybrid discipline - incorporating elements of mathematics, computer science, and engineering - which seeks to analyze complex biological networks and elucidate the design principles that underlie robust performance. Systems Biology holds great promise for addressing fundamental questions in developmental biology, but progress has been hindered by a paucity of individuals with adequate training in both experimental developmental biology and the mathematical and computational disciplines. A predoctoral training program is proposed to remedy this situation. Advanced students at the University of California, Irvine who have already committed to thesis work in Developmental Biology or Systems Biology will receive cross-training through classes, dual mentoring, presentations and career development activities. Trainees may come from any of the nine departmental Ph.D. programs to which 26 faculty trainers belong, including Developmental and Cell Biology, Anatomy and Neurobiology, Biological Chemistry, Neurobiology and Behavior, Mathematics, Computer Science, Physics and Biomedical Engineering. This program will leverage diverse educational resources that are present at University of California, Irvine as a result of its history of strength in Developmental Biology and its recent NIH designation as a National Center for Systems Biology.

Public Health Relevance

Embryonic development is orchestrated by massive networks of gene regulation and signaling. To understand how and why birth defects arise, it is essential to understand these networks as complex systems, with design strengths and weaknesses. By studying the Systems Biology of Development, trainees will prepare for cutting edge research into the causes and treatments of birth defects.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Institutional National Research Service Award (T32)
Project #
5T32HD060555-05
Application #
8469067
Study Section
Special Emphasis Panel (ZHD1-MRG-C (T3))
Program Officer
Coulombe, James N
Project Start
2009-05-01
Project End
2014-04-30
Budget Start
2013-05-01
Budget End
2014-04-30
Support Year
5
Fiscal Year
2013
Total Cost
$256,876
Indirect Cost
$14,970
Name
University of California Irvine
Department
Miscellaneous
Type
Organized Research Units
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Konstorum, Anna; Hillen, Thomas; Lowengrub, John (2016) Feedback Regulation in a Cancer Stem Cell Model can Cause an Allee Effect. Bull Math Biol 78:754-85
Cinquin, Amanda; Chiang, Michael; Paz, Adrian et al. (2016) Intermittent Stem Cell Cycling Balances Self-Renewal and Senescence of the C. elegans Germ Line. PLoS Genet 12:e1005985
Chiang, Michael; Hallman, Sam; Cinquin, Amanda et al. (2015) Analysis of in vivo single cell behavior by high throughput, human-in-the-loop segmentation of three-dimensional images. BMC Bioinformatics 16:397
Kurup, Abhishek; Ravindranath, Shreyas; Tran, Tim et al. (2015) Novel insights from 3D models: the pivotal role of physical symmetry in epithelial organization. Sci Rep 5:15153
Chou, Ching-Shan; Moore, Travis I; Nie, Qing et al. (2015) Alternative cell polarity behaviours arise from changes in G-protein spatial dynamics. IET Syst Biol 9:52-63
Reyes de Mochel, Nabora Soledad; Luong, Mui; Chiang, Michael et al. (2015) BMP signaling is required for cell cleavage in preimplantation-mouse embryos. Dev Biol 397:45-55
McWhorter, Frances Y; Davis, Chase T; Liu, Wendy F (2015) Physical and mechanical regulation of macrophage phenotype and function. Cell Mol Life Sci 72:1303-16
Chiang, Michael; Cinquin, Amanda; Paz, Adrian et al. (2015) Control of Caenorhabditis elegans germ-line stem-cell cycling speed meets requirements of design to minimize mutation accumulation. BMC Biol 13:51
Cinquin, Amanda; Zheng, Likun; Taylor, Pete H et al. (2015) Semi-permeable Diffusion Barriers Enhance Patterning Robustness in the C. elegans Germline. Dev Cell 35:405-17
Zeng, Weihua; Chen, Yen-Yun; Newkirk, Daniel A et al. (2014) Genetic and epigenetic characteristics of FSHD-associated 4q and 10q D4Z4 that are distinct from non-4q/10q D4Z4 homologs. Hum Mutat 35:998-1010

Showing the most recent 10 out of 51 publications