Embryonic development is a spectacular feat of engineering, wherein complex networks of tens of thousands of components are harnessed to achieve growth, differentiation, and patterning that is amazingly robust to intrinsic variability and extrinsic perturbation. Systems Biology is an emerging, hybrid discipline - incorporating elements of mathematics, computer science, and engineering - which seeks to analyze complex biological networks and elucidate the design principles that underlie robust performance. Systems Biology holds great promise for addressing fundamental questions in developmental biology, but progress has been hindered by a paucity of individuals with adequate training in both experimental developmental biology and the mathematical and computational disciplines. A predoctoral training program is proposed to remedy this situation. Advanced students at the University of California, Irvine who have already committed to thesis work in Developmental Biology or Systems Biology will receive cross-training through classes, dual mentoring, presentations and career development activities. Trainees may come from any of the nine departmental Ph.D. programs to which 26 faculty trainers belong, including Developmental and Cell Biology, Anatomy and Neurobiology, Biological Chemistry, Neurobiology and Behavior, Mathematics, Computer Science, Physics and Biomedical Engineering. This program will leverage diverse educational resources that are present at University of California, Irvine as a result of its history of strength in Developmental Biology and its recent NIH designation as a National Center for Systems Biology.
Embryonic development is orchestrated by massive networks of gene regulation and signaling. To understand how and why birth defects arise, it is essential to understand these networks as complex systems, with design strengths and weaknesses. By studying the Systems Biology of Development, trainees will prepare for cutting edge research into the causes and treatments of birth defects.
Showing the most recent 10 out of 58 publications