One of the great challenges in neuroscience is to understand how the neurons of the brain work together as a circuit to compute behaviors, and how such circuit functions are changed in brain disorder states. There is a great need for technologies that enable the neural activity of large numbers of individual cells to be measured in the brain of a mammal such as a mouse - ideally throughout the entire brain, since we do not precisely know the exact set of cells involved with any behavior or brain disorder. We here propose two radical departures from the past, using computational and theoretical analyses to design new neural recording devices, and augmenting these technologies with supplementary tools to enable the bridging of dynamic and anatomical pictures of the brain. As we validate these technologies, we will examine whole-brain neural dynamics and anatomical phenotypes in autism and schizophrenia mouse models, performing whole-brain activity mapping to characterize the altered computations associated with psychiatric illness. Such maps may fundamentally open up new frontiers in thinking about how distributed brain circuits are changed in mental illness, paving the way to new treatment strategies.

Public Health Relevance

The brain is a three-dimensional, densely wired circuit made of cells which interact at a fast timescale. I propose to develop a set of technologies that enable an analysis of how neurons distributed throughout the entire brain compute to implement behavior, and how these interactions go awry in brain disorders. This ability to map such widespread neural dynamics will yield new and fundamental principles of how neural circuits compute, and these technologies will also enable scientists and clinicians to develop new, efficacious, side-effect free treatments to confront the spectrum of neurological and psychiatric disorders. THE FOLLOWING RESUME SECTIONS WERE PREPARED BY THE SCIENTIFIC REVIEW OFFICER TO SUMMARIZE THE OUTCO

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
NIH Director’s Pioneer Award (NDPA) (DP1)
Project #
5DP1NS087724-03
Application #
8897460
Study Section
Special Emphasis Panel (ZRG1-BCMB-N (50))
Program Officer
Bellgowan, Patrick S F
Project Start
2013-09-30
Project End
2018-07-31
Budget Start
2015-08-01
Budget End
2016-07-31
Support Year
3
Fiscal Year
2015
Total Cost
$780,000
Indirect Cost
$280,000
Name
Massachusetts Institute of Technology
Department
Miscellaneous
Type
Other Domestic Higher Education
DUNS #
001425594
City
Cambridge
State
MA
Country
United States
Zip Code
02139
Asano, Shoh M; Gao, Ruixuan; Wassie, Asmamaw T et al. (2018) Expansion Microscopy: Protocols for Imaging Proteins and RNA in Cells and Tissues. Curr Protoc Cell Biol 80:e56
Kolb, Ilya; Talei Franzesi, Giovanni; Wang, Michael et al. (2018) Evidence for Long-Timescale Patterns of Synaptic Inputs in CA1 of Awake Behaving Mice. J Neurosci 38:1821-1834
Scholvin, Jörg; Zorzos, Anthony; Kinney, Justin et al. (2018) Scalable, Modular Three-Dimensional Silicon Microelectrode Assembly via Electroless Plating. Micromachines (Basel) 9:
Piatkevich, Kiryl D; Jung, Erica E; Straub, Christoph et al. (2018) A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat Chem Biol 14:352-360
Oran, Daniel; Rodriques, Samuel G; Gao, Ruixuan et al. (2018) 3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds. Science 362:1281-1285
Allen, Brian D; Moore-Kochlacs, Caroline; Bernstein, Jacob Gold et al. (2018) Automated in vivo patch clamp evaluation of extracellular multielectrode array spike recording capability. J Neurophysiol :
Yoon, Young-Gyu; Dai, Peilun; Wohlwend, Jeremy et al. (2017) Feasibility of 3D Reconstruction of Neural Morphology Using Expansion Microscopy and Barcode-Guided Agglomeration. Front Comput Neurosci 11:97
Cybulski, Thaddeus R; Boyden, Edward S; Church, George M et al. (2017) Nucleotide-time alignment for molecular recorders. PLoS Comput Biol 13:e1005483
Quadrato, Giorgia; Nguyen, Tuan; Macosko, Evan Z et al. (2017) Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545:48-53
Zhao, Yongxin; Bucur, Octavian; Irshad, Humayun et al. (2017) Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy. Nat Biotechnol 35:757-764

Showing the most recent 10 out of 37 publications