It is of utmost importance to identify the circuits underlying learning and memory in order to understand not only the mechanisms of memory but also the how these mechanisms become dysregulated in memory disorders, such as Alzheimer's disease (AD). Human and rodent lesion studies have suggested a role for the hippocampus (HPC) in long-term memory, specifically the subregion CA1. CA1 is preferentially activated when a memory must be retained over a long period of time, and studies have shown that a large proportion of CA1 neurons are reactivated in repeated exposures to the same environment. However, no previous studies have been able to assess the long-term (>1 month) involvement of individual CA1 neurons in learning and memory, or in AD, since all previous transgenic lines have lacked an indelible label. In this application, the contribution of individua CA1 neurons to the encoding of an experience and to the retrieval of a corresponding memory will be investigated by utilizing a transgenic line, the ArcCreERT2 mice. This mouse line allows for the indelible labeling of cells expressing the immediate early gene Arc/Arg3.1 and allows for a comparison between the cells that are activated during the encoding of an experience and those that are activated during the retrieval of the corresponding memory. In combination with optogenetic reporter lines, these studies will assess the long- term involvement of CA1 neurons in memory encoding and retrieval. To fully characterize the role of CA1 neurons in memory, we will selectively express the blue light activated cation channel channelrhodopsin-2 (ChR2) or the yellow light activated outward proton pump archaerhodopsin (Arch) in populations of CA1 neurons during encoding. Using optogenetics, we will then test the hypothesis that a subpopulation of CA1 neurons is sufficient and necessary for the retrieval of a corresponding long-term memory. Next, the role of CA1 in memory encoding and retrieval will be delineated in AD mice by utilizing a triple transgenic design in which CA1 neurons, initially labeled during encoding, can be optogenetically modulated in control and AD mice. In vivo, we will test the hypothesis that optogenetic stimulation or inhibition of CA1 pyramidal neurons during memory retrieval will improve expression of a memory in AD mice. Finally, optogenetic manipulations will be used in order to mimic a deep brain stimulation-like protocol in control and AD mice in order to improve overall cellular function, cell survival, and memory retrieval in AD mice.

Public Health Relevance

This application is the first to examine how hippocampal neural ensembles contribute to learning and memory, and how these neural ensembles are altered in Alzheimer's disease (AD). Optogenetic modulation of these ensembles will be utilized to improve memory retrieval in control and AD mice. Identifying the circuits underlying the memory dysfunction in AD will provide new avenues for developing novel therapies and treatments that would be beneficial for the treatment of AD.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
Early Independence Award (DP5)
Project #
7DP5OD017908-02
Application #
8917731
Study Section
Special Emphasis Panel (ZRG1-BBBP-E (53))
Program Officer
Basavappa, Ravi
Project Start
2014-09-01
Project End
2018-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
2
Fiscal Year
2014
Total Cost
$405,000
Indirect Cost
$155,000
Name
New York State Psychiatric Institute
Department
Type
DUNS #
167204994
City
New York
State
NY
Country
United States
Zip Code
10032
Pavlova, Ina P; Shipley, Shannon C; Lanio, Marcos et al. (2018) Optimization of immunolabeling and clearing techniques for indelibly labeled memory traces. Hippocampus 28:523-535
McGowan, Josephine C; Hill, Collin; Mastrodonato, Alessia et al. (2018) Prophylactic ketamine alters nucleotide and neurotransmitter metabolism in brain and plasma following stress. Neuropsychopharmacology 43:1813-1821
LaGamma, Christina T; Tang, William W; Morgan, Ashlea A et al. (2018) Antidepressant but Not Prophylactic Ketamine Administration Alters Calretinin and Calbindin Expression in the Ventral Hippocampus. Front Mol Neurosci 11:404
Mastrodonato, Alessia; Martinez, Randy; Pavlova, Ina P et al. (2018) Ventral CA3 Activation Mediates Prophylactic Ketamine Efficacy Against Stress-Induced Depressive-like Behavior. Biol Psychiatry 84:846-856
Perusini, Jennifer N; Cajigas, Stephanie A; Cohensedgh, Omid et al. (2017) Optogenetic stimulation of dentate gyrus engrams restores memory in Alzheimer's disease mice. Hippocampus 27:1110-1122
Denny, Christine A; Lebois, Evan; Ramirez, Steve (2017) From Engrams to Pathologies of the Brain. Front Neural Circuits 11:23
McGowan, Josephine C; LaGamma, Christina T; Lim, Sean C et al. (2017) Prophylactic Ketamine Attenuates Learned Fear. Neuropsychopharmacology 42:1577-1589
Brachman, Rebecca A; McGowan, Josephine C; Perusini, Jennifer N et al. (2016) Ketamine as a Prophylactic Against Stress-Induced Depressive-like Behavior. Biol Psychiatry 79:776-86
Cazzulino, Alejandro S; Martinez, Randy; Tomm, Nicole K et al. (2016) Improved specificity of hippocampal memory trace labeling. Hippocampus 26:752-62
Drew, Liam J; Kheirbek, Mazen A; Luna, Victor M et al. (2016) Activation of local inhibitory circuits in the dentate gyrus by adult-born neurons. Hippocampus 26:763-78

Showing the most recent 10 out of 12 publications