Aberrant cell signaling is the main driving force in the development and progression of cancer. Protein inhibitor of activated STAT-1 (PIAS1) plays a fundamental role in cellular signaling by adding small ubiquitin like modifiers (SUMO-chains) onto target proteins. Our lab recently discovered that PIAS1 SUOMOylates the promyelocytic leukemia (PML) tumor suppressor. This event promotes the ubiquitin-mediated degradation of PML, aiding tumor survival. For example, PIAS1 depletion using shRNA in non-small cell lung cancer (NSCLC) and breast cancer cell lines leads to increased PML levels, followed susceptibility to apoptosis and impaired cell proliferation. In addition, my preliminary data show that PIAS1 overexpression in NIH3T3 and mouse embryonic fibroblasts (MEFs) reduces cell-to-cell contact inhibition. Furthermore, siRNA depletion of PIAS1 in cancer cells interferes with cell spreading and failure to migrate in wound healing assays. Notably, PIAS family members have recently been implicated in cytoskeleton dynamics. For instance, PIAS3 SUMOylation of the GTPase RAC1 increased lamelipodia formation in migrating cells. Moreover, PIAS1 SUMOylation of focal adhesion kinase (FAK) promoted increased cell viability under conditions of cellular stress. Together, these observations raise the hypothesis that PIAS1 may be implicated in tumor progression by potentiating tumor survival during cellular stress and in the promotion of cell migration by modulating cell shape, potentially through RAC/RHO and FAK proteins. This proposal aims to evaluate the impact of PIAS1 on the survival of cancer cells and their ability to metastasize using cellular and mouse models of lung cancer. This work is expected to provide a framework to understand how SUMOylation promotes tumorigenesis.

Public Health Relevance

Our preliminary data indicate that protein inhibitor of activated STAT-1 (PIAS1) promotes cancer cell survival and regulates changes in cell morphology during cell migration in cancers where it is highly expressed. We propose to characterize the antitumor effects of PIAS1 inhibition in cellular and mouse models of lung and breast cancer. This work will lay the foundation for our understanding of how PIAS1 is involved in cell survival and cell migration.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Predoctoral Individual National Research Service Award (F31)
Project #
5F31CA180689-03
Application #
8914404
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Mcneil, Nicole E
Project Start
2013-09-16
Project End
2016-09-15
Budget Start
2015-09-16
Budget End
2016-09-15
Support Year
3
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Tang, Ke-Jing; Constanzo, Jerfiz D; Venkateswaran, Niranjan et al. (2016) Focal Adhesion Kinase Regulates the DNA Damage Response and Its Inhibition Radiosensitizes Mutant KRAS Lung Cancer. Clin Cancer Res 22:5851-5863
Constanzo, Jerfiz D; Tang, Ke-Jing; Rindhe, Smita et al. (2016) PIAS1-FAK Interaction Promotes the Survival and Progression of Non-Small Cell Lung Cancer. Neoplasia 18:282-293
Constanzo, Jerfiz D; Deng, Mi; Rindhe, Smita et al. (2016) Pias1 is essential for erythroid and vascular development in the mouse embryo. Dev Biol 415:98-110