Ongoing visceral pain is one of the principal causes of doctors' visits in the United States. Patients suffering from such conditions, including interstitial cystitis/ bladder pain syndrome, commonly experience physiological symptoms like pelvic pain and increases in urination frequency in addition to emotional disturbances like clinical depression and panic attacks. In order to better understand the supraspinal processing that mediates symptoms and co-morbidities of visceral pain conditions, we are investigating the central amygdala (CeA), a brain region known to process both nociceptive and affective information. As the major information output nucleus of the amygdala, the CeA is able to process noxious stimuli and modulate descending nociceptive pathways. Interestingly, the left and right CeA modulate asymmetrical molecular and behavioral responses to noxious somatic stimuli. It remains to be seen if the left and right CeA differentially process noxious visceral stimuli like bladder pain. The objective of these experiments is to determine the physiological extent of bladder pain lateralization between the left and right CeA and the anatomical and molecular mechanism of this phenomenon. In order to determine if the left and right CeA differentially modulate physiological responses to bladder pain, optogenetics and urinary bladder distension, a common model of rodent bladder nociception, will be used; optogenetics will allow activation or inhibition of the left or right CeA to occur while animals' bladders are being distended with increasing levels of compressed air. To further understand the mechanisms behind asymmetrical CeA processing of noxious stimuli, immunohistochemistry and viral tracing techniques will be used. Following bladder distension, localization of pain-induced neuronal markers will be compared to natively expressed neurotransmitters in the CeA to elicit specific cell types involved in visceral pain processing. Finally, recombinant viruses wil be used to study differences in descending projection neurons arising from the left versus the right CeA.

Public Health Relevance

The contributions of supraspinal processing to visceral pain conditions are relatively unknown. By studying the central amygdala and its involvement in bladder pain, a better understanding of nociceptive modulation and novel treatment targets for visceral pain conditions will be found.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Predoctoral Individual National Research Service Award (F31)
Project #
5F31DK104538-03
Application #
9127225
Study Section
Special Emphasis Panel (ZDK1)
Program Officer
Rankin, Tracy L
Project Start
2014-09-22
Project End
2017-09-21
Budget Start
2016-09-22
Budget End
2017-09-21
Support Year
3
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Duquesne University
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
004501193
City
Pittsburgh
State
PA
Country
United States
Zip Code
15282
Sadler, Katelyn E; Gartland, Nathan M; Cavanaugh, Jane E et al. (2017) Central amygdala activation of extracellular signal-regulated kinase 1 and age-dependent changes in inflammatory pain sensitivity in mice. Neurobiol Aging 56:100-107
Sadler, Katelyn E; McQuaid, Neal A; Cox, Abigail C et al. (2017) Divergent functions of the left and right central amygdala in visceral nociception. Pain 158:747-759
Sadler, Katelyn E; Kolber, Benedict J (2016) Urine Trouble: Alterations in Brain Function Associated with Bladder Pain. J Urol 196:24-32
Wolz, Melissa J; Sadler, Katelyn E; Long, Caela C et al. (2016) Postinflammatory hyperpigmentation after human cold pain testing. Pain Rep 1:
Long, Caela C; Sadler, Katelyn E; Kolber, Benedict J (2016) Hormonal and molecular effects of restraint stress on formalin-induced pain-like behavior in male and female mice. Physiol Behav 165:278-85