Contour integration (CI)-for the purposes of the present application-refers to the ability to represent spatially segregated edges as a single continuous contour. Numerous studies suggest that people with schizophrenia (SZ) are impaired at contour integration, but the mechanisms, time-course, and clinical implications of the impairment are just beginning to be explored. To shed light on this issue, we conduct a two phase psychophysical investigation. In the first phase, we will satisfy NIMH Strategy 1.1, and clarify the neural mechanisms behind the deficit (Aim 1). Clinical CI studies to date have almost exclusively employed lower spatial frequency contour elements (<7 cycles/deg), but converging evidence suggests that schizophrenia is characterized by magnocellular dysfunction and, correspondingly, impaired processing of lower spatial frequencies (<8 cycles deg). To determine whether spatial frequency processing can account for CI deficits in SZ, a later-episode patient group and a matched healthy control group will perform 4 different tasks. The spatial frequency structure of the stimuli for each task will be varied to either include or not include low spatial frequencies. If CI deficits arise even with elements defined by high spatial frequencies, then impaired lateral interactions in early visual cortex would be evidenced as a core feature of schizophrenia. By contrast, if CI dysfunction arises only when lower spatial frequencies are available, then that would add to the growing evidence for magnocellular dysfunction in SZ, and would provide a new interpretation of results stemming from CI tasks. In the second data collection phase, we will satisfy NIMH Strategy 2.1 and examine the development of CI deficits from first-episode onward (Aim 2). Newly recruited subjects will be either healthy controls, first- episode patients, or later-episode patients. The tasks in this second phase will be the same as those that revealed between-group differences (p<0.05) in the first phase. Importantly, this phase will provide the first data on whether CI deficits exist among people with schizophrenia who recently experienced their first psychotic episode. At the end of data collection, we will combine data across phases to make two determinations. First, we will assess if CI deficits-at either high or lower spatial frequencies- correlate with clinical variables such as: functional outcome, disorganized symptoms, positive/negative symptoms, and premorbid social functioning (Aim 3). Second, we will compare the four tasks on the basis of: between-group effect sizes, capacities to predict illness features, total duration, and drop-out rate (Aim 4). Evaluating the tasks in this way will guide future larger-scale studies aiming to further establish, explain, or make use of contour deficits in schizophrenia. In summary, the four aims achieved over two data collection phases will elucidate the neural mechanisms, time course, clinical correlates, and optimal measures of contour integration dysfunction in schizophrenia.

Public Health Relevance

In accord with NIMH Strategy 1.1 (Develop an integrative understanding of basic brain-behavior processes...for understanding mental illness), the proposed research will clarify the brain mechanisms that underlie the reduced ability to connect spatially separated contour elements in schizophrenia. Furthermore, consistent with NIMH Strategy 2.1 (Define the developmental trajectories of mental disorders), the proposed research will describe the developmental trajectory of perceptual dysfunction in schizophrenia, and provide the first substantive data on whether contour integration impairments are present as early as the first episode of psychosis.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Postdoctoral Individual National Research Service Award (F32)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Chavez, Mark
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Rutgers University
New Brunswick
United States
Zip Code
Keane, Brian P (2018) Contour interpolation: A case study in Modularity of Mind. Cognition 174:1-18
Keane, Brian P; Paterno, Danielle; Kastner, Sabine et al. (2016) Visual integration dysfunction in schizophrenia arises by the first psychotic episode and worsens with illness duration. J Abnorm Psychol 125:543-9
Keane, Brian P; Silverstein, Steven M; Wang, Yushi et al. (2016) Seeing more clearly through psychosis: Depth inversion illusions are normal in bipolar disorder but reduced in schizophrenia. Schizophr Res 176:485-492
Keane, Brian P; Kastner, Sabine; Paterno, Danielle et al. (2015) Is 20/20 vision good enough? Visual acuity differences within the normal range predict contour element detection and integration. Psychon Bull Rev 22:121-7
Feigenson, Keith A; Keane, Brian P; Roché, Matthew W et al. (2014) Contour integration impairment in schizophrenia and first episode psychosis: state or trait? Schizophr Res 159:515-20
Keane, Brian P; Erlikhman, Gennady; Kastner, Sabine et al. (2014) Multiple forms of contour grouping deficits in schizophrenia: what is the role of spatial frequency? Neuropsychologia 65:221-33
Strauss, Milton E; McLouth, Christopher J; Barch, Deanna M et al. (2014) Temporal stability and moderating effects of age and sex on CNTRaCS task performance. Schizophr Bull 40:835-44
Keane, Brian P; Joseph, Jamie; Silverstein, Steven M (2014) Late, not early, stages of Kanizsa shape perception are compromised in schizophrenia. Neuropsychologia 56:302-11
Erlikhman, Gennady; Keane, Brian P; Mettler, Everett et al. (2013) Automatic feature-based grouping during multiple object tracking. J Exp Psychol Hum Percept Perform 39:1625-37
Silverstein, Steven M; Keane, Brian P; Wang, Yushi et al. (2013) Effects of short-term inpatient treatment on sensitivity to a size contrast illusion in first-episode psychosis and multiple-episode schizophrenia. Front Psychol 4:466

Showing the most recent 10 out of 16 publications