NMDA receptors are unique from other glutamate receptors in that they are permeable to calcium. This calcium permeability is necessary for neuronal long-term potentiation, the cellular basis of learning and memory, and can also cause excitotoxicity and cell death in disease conditions like stroke and epilepsy. Therefore understanding mechanisms that influence gating and permeability of NMDA receptors will provide more insight into the processes that control plasticity and excitotoxicity. The gating and permeability of NMDA receptors are influenced by a variety of extracellular and intracellular signals, including protein kinase A (PKA), which is the focus of this application. PKA has been shown to increase both the amplitude and calcium component of NMDA currents, which then influences many types of neuronal signaling, including long-term potentiation. The mechanism by which PKA modulates NMDA receptors, however, is completely unknown. In this application, therefore, modulation of NMDA receptors will be investigated using two aims. The goal of the first aim is to determine the mechanism by which NMDA receptor gating and permeability are modulated by PKA using single NMDA receptor recordings, pharmacological manipulations, kinetic modeling, and site- directed mutagenesis. In the second aim, the effect of PKA modulation on synaptic transmission, calcium influx, and long-term potentiation will be investigated. The results of these experiments will therefore determine the mechanism by which PKA alters NMDA receptor gating and give insight as to how this modulation may ultimately change neuronal output.

Public Health Relevance

Calcium influx into neurons through NMDA receptors causes a variety of effects, including neuronal plasticity, the cellular basis of learning, as well as cel death in conditions like epilepsy and stroke. This application will investigate one mechanism by which NMDA receptor activity, particularly calcium influx, is regulated by a kinase pathway. Understanding the mechanisms by which NMDA gating and calcium influx is modulated will therefore give more insight into the mechanisms of learning and memory, as well as potential methods to prevent cell death in various disease states.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Postdoctoral Individual National Research Service Award (F32)
Project #
1F32NS077622-01A1
Application #
8315448
Study Section
Special Emphasis Panel (ZRG1-F03B-G (20))
Program Officer
Silberberg, Shai D
Project Start
2012-04-07
Project End
2015-04-06
Budget Start
2012-04-07
Budget End
2013-04-06
Support Year
1
Fiscal Year
2012
Total Cost
$49,214
Indirect Cost
Name
State University of New York at Buffalo
Department
Biochemistry
Type
Schools of Medicine
DUNS #
038633251
City
Buffalo
State
NY
Country
United States
Zip Code
14260
Aman, Teresa K; Gordon, Sharona E; Zagotta, William N (2016) Regulation of CNGA1 Channel Gating by Interactions with the Membrane. J Biol Chem 291:9939-47
Gordon, Sharona E; Senning, Eric N; Aman, Teresa K et al. (2016) Transition metal ion FRET to measure short-range distances at the intracellular surface of the plasma membrane. J Gen Physiol 147:189-200
Murphy, Jessica A; Stein, Ivar S; Lau, C Geoffrey et al. (2014) Phosphorylation of Ser1166 on GluN2B by PKA is critical to synaptic NMDA receptor function and Ca2+ signaling in spines. J Neurosci 34:869-79
Aman, Teresa K; Maki, Bruce A; Ruffino, Thomas J et al. (2014) Separate intramolecular targets for protein kinase A control N-methyl-D-aspartate receptor gating and Ca2+ permeability. J Biol Chem 289:18805-17