Amyotrophic lateral sclerosis (ALS) is a severe progressive neurodegenerative disease characterized by degeneration of motor neurons in the brain and spinal cord, resulting in neurogenic muscle wasting, paralysis, and death. Nearly 95% of ALS cases have pathology featuring phosphorylated inclusions of the TDP-43 protein in neurons and glial cells. Furthermore, mutations in the gene coding for TDP-43 have been shown to cause some cases of ALS, indicating normal TDP-43 is critical for neuronal health. Phosphorylation of TDP-43 reduces its turnover, increases its aggregation, and promotes neurotoxicity and neurodegeneration. Recent work has identified the phosphatase calcineurin as a key regulator of phosphorylated TDP-43 (pTDP) accumulation. By dephosphorylating pTDP, calcineurin reduces levels of neurotoxic pTDP and protects against disease phenotypes, including neurodegeneration. An understanding of the mechanisms controlling TDP-43 pathology in ALS is critical to the design of neuroprotective strategies. This proposal describes experiments exploring the cellular and molecular changes that promote TDP-43-targeted calcineurin phosphatase activity, with a focus on the development of therapeutic interventions for the treatment of ALS. This work will 1) elucidate mechanisms controlling calcineurin activation and pTDP clearance, 2) evaluate activation of calcineurin as a novel therapeutic strategy for the clearance of pTDP, 3), provide new information about cellular recovery following neurotoxic stress, and 4) may provide additional targets for therapeutic intervention. Completion of this work will advance understanding of the disease processes underlying ALS and provide preclinical validation of a new therapeutic approach.

Public Health Relevance

The National Academy of Sciences Institute on Medicine has found an association between service in the U.S. military and ALS. American Veterans as a whole are at about 60% greater risk than U.S. civilians. Pathological TDP-43 occurs in the majority of ALS cases resulting in severe disability and premature death in American Veterans. Furthermore, ALS has been designated a service connected condition by the Department of Veterans Affairs. The burden placed on America Veterans afflicted with ALS is incalculable as this life ending neurologic condition causes rapid and severe disability ultimately leading to death. Here we propose to devise and test neuroprotective strategies targeting genes causing and contributing to disease using simple models of ALS. This in turn may ultimately lead to potential therapeutic interventions for the benefit of all those affected by ALS including Veterans.

Agency
National Institute of Health (NIH)
Institute
Veterans Affairs (VA)
Type
Non-HHS Research Projects (I01)
Project #
5I01BX004044-02
Application #
9815316
Study Section
Neurobiology E (NURE)
Project Start
2018-10-01
Project End
2022-09-30
Budget Start
2019-10-01
Budget End
2020-09-30
Support Year
2
Fiscal Year
2020
Total Cost
Indirect Cost
Name
VA Puget Sound Healthcare System
Department
Type
DUNS #
020232971
City
Seattle
State
WA
Country
United States
Zip Code
98108