The long-term goals of this project are to define the interactions between insulin resistance, genetic and environmental risk factors in the etiology of colon cancer and to achieve further career development training for the applicant in molecular epidemiology and bioinformatics. Dr. Keku, the applicant, is an Assistant Professor at UNC. Her mentors are Drs. Robert Millikan and Kay Lund. Dr. Millikan is an established molecular epidemiologist. He is the Principal Investigator of the Carolina Breast Cancer Study and also part of an international collaboration investigating the interactions between sunlight and genetic factors in the etiology of malignant melanoma. Dr. Lund is a Professor of Molecular Biology and Physiology and an expert on the IGF system as it relates to GI disease. They propose a mentored career training for Dr. Keku in molecular epidemiology and bioinformatics utilizing the resources at the UNC School of Public Health and the Department of Cell and Molecular Physiology in the School of Medicine. The study proposed as part of the mentored career development training is a case-control study of insulin resistance (insulin/IGF) and colon cancer in African Americans and whites. Colon cancer is the most common gastrointestinal malignancy in the United States. The rise in the incidence and mortality of colon cancer in African Americans poses a serious public health problem.
The specific aims of this study are: 1)To examine the association between insulin/IGF axis and colon cancer in African American and white subjects with and without colon cancer. 2) To evaluate the role of genetic polymorphisms in the insulin/IGF axis and their relationship to colon cancer and associated risk factors. 3) To examine the association between the insulin/IGF-axis and factors related to insulin resistance in African American and white subjects with and without colon cancer. The proposed study will utilize available specimens and measurements from a population based case-control study of colon cancer (NCI R01 CA66635). We will use plasma and DNA specimens to determine insulin, IGF-I, IGF-II, IGFBP-1, IGFBP-3, glucose and C-peptide levels and for genotyping assays respectively. The results of the laboratory assays will be merged with lifestyle/dietary information and analyzed for associations. The proposed project will advance the understanding of the role of insulin resistance in colon cancer among African Americans and whites.