My goal as an independent researcher is to use a two-pronged approach to study prostate disease: (1) I will use the developing prostate as a model system for elucidating previously unrecognized signaling pathways that contribute to prostate growth and (2) I will investigate these signaling pathways in clinically relevant models of benign prostate hyperplasia or prostate cancer. My research focus in this proposal is to test the overarching hypothesis that ?-catenin is required for prostate ductal development in the embryonic mouse prostate anlagen, the urogenital sinus (UGS). The first two specific aims will investigate the function of ?-catenin during prostatic budding. They will test hypotheses that (1) androgens stimulate ?-catenin-mediated transcription in the UGS and that ?-catenin is required for budding, and (2) ?-catenin mediates cell adhesion during prostatic bud formation and that this action of ?-catenin is required for budding. The last aim investigates the regulation of ?-catenin during budding. It will test the hypothesis that (3) fibroblast growth factor 10 is required for stabilizing ?-catenin during prostatic budding. This research plan has a high probability of leading to the identification of ?-catenin as a central player in prostatic budding. My plan is to use the above results as preliminary data to apply, in year 3 of this award, for an RO1 or R03 grant focused on mechanisms of benign prostate hyperplasia or prostate cancer. As a K01 recipient, I will follow a career development plan with very specific research and development milestones for each award year. I will meet regularly with my mentors and advisory committee and complete didactic coursework in cancer biology. I will obtain experiential training in grant writing, Wnt/ ?-catenin signaling, benign prostate hyperplasia, and prostate cancer. This plan will stretch my research expertise and enhance my training in prostate disease research. The University of Wisconsin is an NIDDK-sponsored O'Brien Urology Research Center, an NCI-sponsored Comprehensive Cancer Center, and boasts nearly 40 prostate research labs, culminating in an ideal training environment for me as a future prostate scientist. Biological factors regulating growth during prostate development are also believed to be responsible for inappropriate growth during prostate disease. The proposed research will investigate how the ?-catenin protein interacts with male sex hormones to control prostate development, as these interactions might provide clues for how inappropriate prostate growth is activated during prostate disease.
Biological factors regulating growth during prostate development are also believed to be responsible for inappropriate growth during prostate disease. The proposed research will investigate how the ?-catenin protein interacts with male sex hormones to control prostate development, as these interactions might provide clues for how inappropriate prostate growth is activated during prostate disease.
Showing the most recent 10 out of 15 publications