The technique of transient electric birefringence will be used to study the structure of DNA in solution in order to understand the packaging of DNA in vivo and to estimate the strain arising from the mutation causing cyclobutane-type thymine-thymine dimers. The temporal responses of the field free decay and field reversal transient birefringence experiments are very sensitive to the average structure and ionic environment of nuclei acids in solution. Measurements of the rotational diffusion constant of pBR322 restriction fragments as a function of fragment size, ionic strength and temperature will give the lateral stiffness and free energy, enthalpy, and entropy associated with the flexing of DNA. Steric and electrostatic contributions to the persistence length will be separated. The amplitude and dynamics of ionic polarizability of nucleic acids will be elucidated from field reversal experiments on restriction fragments in which the species and concentration of counterions will be varied. The dynamic information will give information about the mobility of counterions in the vicinity of the phosphates in the double helix. Ultraviolet radiation of DNA converts a portion of adjacent pyrimidine bases into cyclobutane dimers. These dimers have been implicated as biological lesions. The degree of denaturing and the resulting angular deformation of DNA restriction fragments will be measured by studying the rotational diffusion of fragments before and after dimer formation. This is a very sensitive way to characterize the small bend which may be introduced in the DNA double helix. The adiabatic compressibility of proteins in aqueous solutions will be determined from ultrasonic velocity and density measurements in order to study the various forces which affects their dynamic structure and function. The electrostatic contributions to the relative stabilities and compressibilities of ferri- and ferrocytochrome c will be investigated by varying the ionic strength. Measurements on ferri- and ferrocytochrome b5 as well as on the apoprotein will yield information on the way in which the heme promotes mechanical stability to the protein. Analysis of results on lysozyme with and without substrates will help elucidate the dynamic aspects of enzyme action.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Modified Research Career Development Award (K04)
Project #
5K04DK001353-05
Application #
3072373
Study Section
Biophysics and Biophysical Chemistry A Study Section (BBCA)
Project Start
1984-09-01
Project End
1989-08-31
Budget Start
1988-09-01
Budget End
1989-08-31
Support Year
5
Fiscal Year
1988
Total Cost
Indirect Cost
Name
San Francisco State University
Department
Type
Schools of Arts and Sciences
DUNS #
City
San Francisco
State
CA
Country
United States
Zip Code
94132