The candidate, Manisha Balwani MD, MS, is an Assistant Professor in the Department of Genetics and Genomic Sciences at the Mount Sinai School of Medicine and is board certified in Internal Medicine and Clinical Genetics. This grant proposal is designed to provide the candidate with a mentored training experience that will facilitate her development as an independent clinical researcher focused on the Porphyrias, the inborn errors of heme biosynthesis. The Mentors are experienced in the clinical, biochemical, and molecular studies of these diseases. The Mentors have a strong record in mentoring fellows and junior faculty in translational research, clinical trials and drug development. Thus, the mentoring program and laboratory and clinical research environment that will be available to the applicant will facilitate her development as an independent researcher. The proposed research will focus on the Erythropoietic Protoporphyria (EPP)-phenotype, a group of genetically heterogenous photo-induced, severe, cutaneous porphyrias. Three subtypes of the EPP-phenotype have been identified to date: 1) autosomal recessive EPP due to loss- of-function mutations in the ferrochelatase (FECH) gene, 2) X-linked Protoporphyria (XLP), a newly recognized subtype resulting from gain-of-function mutations of the X-linked erythroid-specific d- aminolevulinate synthase (ALAS2) gene, and 3) a subtype with elevated erythrocyte protoporphyrins, cutaneous photosensitivity, and normal FECH and ALAS2 alleles. The proposed studies will initially identify, characterize, and determine the frequency of the FECH and ALAS2 mutations causing the EPP-phenotype in over 100 unrelated patients already enrolled in the Porphyria Consortium. The natural history, clinical spectrum, quality of life, and erythrocyte protoporphyrin levels will be determined in patients with mutation- confirmed EPP and XLP. In XLP, the absence or presence and severity of clinical manifestations, and the levels of erythrocyte free- and zinc-protoporphyrins will be determined in female heterozygotes and correlated with the proportion of mutant ALAS2 alleles expressed in hematopoietic cells from individual heterozygotes due to skewing of random X-chromosomal inactivation. A novel FDA-approved pilot study will be conducted in patients with EPP and XLP to determine if Isoniazid, which binds to pyridoxal phosphate, a co-factor of ALAS2, can decrease the activity of ALAS2, thereby reducing the formation of erythrocyte protoporphyrin, which causes the XLP manifestations. The protected time afforded by this award would permit the applicant to become expert in the diagnosis and management of the porphyrias, facilitate the applicant's goal of establishing an independent research career focused on studies of porphyria pathogenesis and the development of novel treatments.

Public Health Relevance

The proposed research will characterize the genetic bases, natural history, quality of life, and investigate a novel therapeutic intervention in patients witha severe cutaneous porphyria, Erythropoietic Protoporphyria (EPP), and its subtypes. These inherited disorders are characterized by skin photosensitivity in infancy and childhood, diminished quality of life, and in some cases, progression to liver dysfunction and failure. The goals of the proposed studies are to understand the clinical manifestations and variability of the EPP-phenotype and subtypes, and to develop novel treatments to improve the quality of life of these patients.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Mentored Patient-Oriented Research Career Development Award (K23)
Project #
4K23DK095946-04
Application #
9060315
Study Section
Kidney, Urologic and Hematologic Diseases D Subcommittee (DDK)
Program Officer
Bishop, Terry Rogers
Project Start
2013-07-01
Project End
2018-04-30
Budget Start
2016-05-01
Budget End
2017-04-30
Support Year
4
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Icahn School of Medicine at Mount Sinai
Department
Genetics
Type
Schools of Medicine
DUNS #
078861598
City
New York
State
NY
Country
United States
Zip Code
10029
Chen, Brenden; Solis-Villa, Constanza; Erwin, Angelika L et al. (2018) Identification and characterization of 40 novel hydroxymethylbilane synthase mutations that cause acute intermittent porphyria. J Inherit Metab Dis :
Lala, Sajel M; Naik, Hetanshi; Balwani, Manisha (2018) Diagnostic Delay in Erythropoietic Protoporphyria. J Pediatr 202:320-323.e2
Balwani, Manisha; Naik, Hetanshi; Anderson, Karl E et al. (2017) Clinical, Biochemical, and Genetic Characterization of North American Patients With Erythropoietic Protoporphyria and X-linked Protoporphyria. JAMA Dermatol 153:789-796
Balwani, Manisha; Wang, Bruce; Anderson, Karl E et al. (2017) Acute hepatic porphyrias: Recommendations for evaluation and long-term management. Hepatology 66:1314-1322
Naik, Hetanshi; Stoecker, Mikayla; Sanderson, Saskia C et al. (2016) Experiences and concerns of patients with recurrent attacks of acute hepatic porphyria: A qualitative study. Mol Genet Metab 119:278-283
Balwani, Manisha; Singh, Preeti; Seth, Anju et al. (2016) Acute Intermittent Porphyria in children: A case report and review of the literature. Mol Genet Metab 119:295-299
Chen, Brenden; Solis-Villa, Constanza; Hakenberg, Jörg et al. (2016) Acute Intermittent Porphyria: Predicted Pathogenicity of HMBS Variants Indicates Extremely Low Penetrance of the Autosomal Dominant Disease. Hum Mutat 37:1215-1222
Brancaleoni, V; Balwani, M; Granata, F et al. (2016) X-chromosomal inactivation directly influences the phenotypic manifestation of X-linked protoporphyria. Clin Genet 89:20-6
Langendonk, Janneke G; Balwani, Manisha; Anderson, Karl E et al. (2015) Afamelanotide for Erythropoietic Protoporphyria. N Engl J Med 373:48-59
Gou, Eric W; Balwani, Manisha; Bissell, D Montgomery et al. (2015) Pitfalls in Erythrocyte Protoporphyrin Measurement for Diagnosis and Monitoring of Protoporphyrias. Clin Chem 61:1453-6

Showing the most recent 10 out of 11 publications