The candidate's long-term goal is to develop an independent research program focused on characterizing the development of brain and sensorimotor skills in children with autism. To achieve this goal, the candidate has organized a training program involving coursework, workshops, and consultation with senior experts focused on motor system physiology, the neurobiology of autism, methods for assessing ocular and manual motor control, and brain development. The host institution, the University of Illinois at Chicago (UIC), provides numerous training activities and resources relevant to this award, including regular seminars, lectures and journal clubs on fMRI methods and data analysis, autism research, neuropsychology, neuroanatomy and motor control and movement disorders. The mentor, Dr. John Sweeney, has performed oculomotor and fMRI studies of health and disease for over 25 years, and he has been the primary mentor of 9 K awards. He is co-Director for the UIC Autism Center of Excellence project grant. The candidate is an investigator on the Autism Center of Excellence, which provides him with direct contact with referral sources for the proposed studies and exposure to the broader autism community within Chicago such as the Midwestern Autism Consortium. The candidate will investigate the development of motor control and brain systems in autism. While this is an understudied aspect of autism, considerable evidence suggests motor impairments are present in the majority of affected individuals. Sixty individuals with autism between ages 5-25 years will be compared with 60 age- and IQ- matched healthy controls. Subjects will perform sustained and ballistic motor control tasks for both ocular and manual systems. Preliminary evidence indicates that subjects with autism show reduced: a) visual tracking accuracy, b) manual force stability, c) saccade accuracy, and d) ballistic force accuracy. In addition, the variability-reducing function of the cerebellum is implicated by pilot data showing increased trial- wise variability of saccade and ballistic force accuracy. Parallel fMRI tasks will assess the development of cerebellar ocular and manual motor circuits in the 45 subjects with autism and 45 controls >age 8 years. Pilot data suggest reduced activation in autism within midline cerebellar vermis during eye movement tasks and in lateral cerebellar hemispheres during manual control. Neuropsychological tests of motor skill, as well as clinical neurological examinations of motor function, also will be administered. These studies have promise to clarify the nature and developmental trajectory of motor system dysfunctions in this highly prevalent neurodevelopmental disorder.

Public Health Relevance

Motor impairments and cellular abnormalities in the cerebellum have been documented in the majority of individuals with autism studied to date. The proposed studies will examine motor and cerebellar development in autism. These studies have the potential to elucidate abnormal developmental pathways of motor and cerebellar systems, which in turn could provide clues to pathophysiological mechanisms in autism, assist in more reliable diagnosis, and inform the development of novel treatments targeting cerebellar systems.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Mentored Patient-Oriented Research Career Development Award (K23)
Project #
5K23MH092696-05
Application #
8468745
Study Section
Child Psychopathology and Developmental Disabilities Study Section (CPDD)
Program Officer
Gilotty, Lisa
Project Start
2010-09-16
Project End
2015-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
5
Fiscal Year
2013
Total Cost
$157,148
Indirect Cost
$11,641
Name
University of Texas Sw Medical Center Dallas
Department
Psychiatry
Type
Schools of Medicine
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Schmitt, Lauren M; White, Stormi P; Cook, Edwin H et al. (2018) Cognitive mechanisms of inhibitory control deficits in autism spectrum disorder. J Child Psychol Psychiatry 59:586-595
Shou, Guofa; Mosconi, Matthew W; Wang, Jun et al. (2017) Electrophysiological signatures of atypical intrinsic brain connectivity networks in autism. J Neural Eng 14:046010
Neely, Kristina A; Mohanty, Suman; Schmitt, Lauren M et al. (2016) Motor Memory Deficits Contribute to Motor Impairments in Autism Spectrum Disorder. J Autism Dev Disord :
D'Cruz, A-M; Mosconi, M W; Ragozzino, M E et al. (2016) Alterations in the functional neural circuitry supporting flexible choice behavior in autism spectrum disorders. Transl Psychiatry 6:e916
Wang, Zheng; Hallac, Rami R; Conroy, Kaitlin C et al. (2016) Postural orientation and equilibrium processes associated with increased postural sway in autism spectrum disorder (ASD). J Neurodev Disord 8:43
Mosconi, Matthew W; Sweeney, John A (2015) Sensorimotor dysfunctions as primary features of autism spectrum disorders. Sci China Life Sci 58:1016-23
Miller, Haylie L; Ragozzino, Michael E; Cook, Edwin H et al. (2015) Cognitive set shifting deficits and their relationship to repetitive behaviors in autism spectrum disorder. J Autism Dev Disord 45:805-15
Schmitt, Lauren M; Cook, Edwin H; Sweeney, John A et al. (2014) Saccadic eye movement abnormalities in autism spectrum disorder indicate dysfunctions in cerebellum and brainstem. Mol Autism 5:47
Wang, Jun; Barstein, Jamie; Ethridge, Lauren E et al. (2013) Resting state EEG abnormalities in autism spectrum disorders. J Neurodev Disord 5:24
D'Cruz, Anna-Maria; Ragozzino, Michael E; Mosconi, Matthew W et al. (2013) Reduced behavioral flexibility in autism spectrum disorders. Neuropsychology 27:152-60

Showing the most recent 10 out of 13 publications