We propose to develop innovative statistical tools for melding exposure models and observational data aris- ing from measurements of concentrations in controlled chamber conditions. As a ?rst step, we will construct a rich dataset of exposure scenarios in laboratory exposure chambers and real workplace settings, contain- ing data on exposure determinants such as contaminant generation and ventilation rates and exposure mea- surements. We will develop a comprehensive and computationally feasible Bayesian statistical framework for melding the physical exposure models with experimental data from the workplace to effectively account for the sources of uncertainty and produce reliable statistical inference (estimation and predictions). We will employ a Bayesian framework to validate physical models from monitoring data. Our framework will also include formal statistical measures for validating models with observed ?eld data. We do so by assessing how adequately the models capture features and patterns in the monitoring data, applying sensitivity analysis to the choice of priors, and choosing or selecting a model among a set of competing models. We will also develop and disseminate a user-friendly statistical software package that will enable researchers to implement the proposed methods for a wide variety of physical models to analyze their data in a seamless and convenient manner. Upon successful completion of the project, our developments will allow researchers and exposure managers to systematically evaluate retrospective exposure, to predict current and future exposure in the absence of the working process or operation, and to estimate exposure with only a small number of air samples with possibly high variability. With only a few monitoring data points, our Bayesian melding framework will provide more precise estimates of exposure than monitoring. With advances in computational methods and inexpensive software implementation, we purport to exalt formal modeling to an indispensable position in the exposure assessors' armory.

Public Health Relevance

This proposal attempts to advance scienti?c understanding of the underlying physical processes in exposure assessment scenarios by developing innovative statistical tools for estimating and validating physical models using noisy observational data in less than ideal conditions. Exposure models can signi?cantly improve the ef?ciency and effectiveness of risk assessment and management programs by helping to predict exposures for operations that have not yet been installed or by reconstructing exposures for processes that have long disap- peared. The proposal outlines statistical methods that can be combined with the exposure model equations to produce a unifying framework for parameter estimation and model validation.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Research Project (R01)
Project #
Application #
Study Section
Biostatistical Methods and Research Design Study Section (BMRD)
Program Officer
Joubert, Bonnie
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Biostatistics & Other Math Sci
Schools of Public Health
Los Angeles
United States
Zip Code