The postulated role of exocytosis in mediating various functional responses associated with neutrophil activation has not been directly tested. We will use a novel approach;generating TAT-fusion proteins containing the coiled-coil domains of different SNARE proteins;to test the hypothesis that blocking exocytosis of distinct granule subsets will prevent specific neutrophil phenotypic changes and this strategy may be used to prevent neutrophil-mediated tissue damage in vivo. The specific objectives of the mentored phase of this proposal are: 1) to determine the ability of TAT-fusion proteins containing the SNARE domains of SNAP-23, syntaxins, and VAMPs to inhibit exocytosis of each of the four neutrophil granule subsets. The training goal of this aim is to develop molecular biology and cell biology skills that will allow the applicant to address experimental questions at new levels and apply them in the independent phase of this proposal. 2) To determine the most effective way to administer the TAT-SNARE fusion proteins in vivo and to determine the effect of these fusion proteins on models of acute neutrophil-dependent inflammation in rats. The training goals of this aim are to learn animal models of neutrophil-dependent inflammation, and to establish the ability of TAT-fusion proteins to inhibit neutrophil exocytosis in vivo. 3) Define other proteins that interact with SNARE proteins by proteomic analysis. The training goal of this aim is to develop the ability to perform proteomic analysis. The state-of-the-art techniques acquired during the mentored phase will greatly increase the expertise that will allow the PI to become a successful independent investigator. For the independent phase the specific objectives are: 1) To determine the specific functional responses that are regulated by neutrophil granule exocytosis;2) To define the mechanisms by which inhibition of neutrophil exocytosis in vivo blocks the inflammatory response;and 3) To investigate the molecular mechanisms by which exocytosis is stimulated. The training the applicant will receive will make her unique in the combination of experience, interest, and state-of-the-art technology and will maximize her potential to become an independent NIH-funded investigator.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Career Transition Award (K99)
Project #
1K99HL087924-01A2
Application #
7589011
Study Section
Special Emphasis Panel (ZHL1-CSR-Z (O1))
Program Officer
Mondoro, Traci
Project Start
2009-03-01
Project End
2011-02-28
Budget Start
2009-03-01
Budget End
2010-02-28
Support Year
1
Fiscal Year
2009
Total Cost
$129,060
Indirect Cost
Name
University of Louisville
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
057588857
City
Louisville
State
KY
Country
United States
Zip Code
40292
McLeish, Kenneth R; Merchant, Michael L; Creed, T Michael et al. (2017) Frontline Science: Tumor necrosis factor-? stimulation and priming of human neutrophil granule exocytosis. J Leukoc Biol 102:19-29
Bai, Jianwen; Tang, Lunxian; Lomas-Neira, Joanne et al. (2015) TAT-SNAP-23 treatment inhibits the priming of neutrophil functions contributing to shock and/or sepsis-induced extra-pulmonary acute lung injury. Innate Immun 21:42-54
Wang, Qian; Jotwani, Ravi; Le, Junyi et al. (2014) Filifactor alocis infection and inflammatory responses in the mouse subcutaneous chamber model. Infect Immun 82:1205-12
Fernandez-Botran, Rafael; Uriarte, Silvia M; Arnold, Forest W et al. (2014) Contrasting inflammatory responses in severe and non-severe community-acquired pneumonia. Inflammation 37:1158-66
Jauregui, Catherine E; Wang, Qian; Wright, Christopher J et al. (2013) Suppression of T-cell chemokines by Porphyromonas gingivalis. Infect Immun 81:2288-95
Uriarte, Silvia M; Rane, Madhavi J; Merchant, Michael L et al. (2013) Inhibition of neutrophil exocytosis ameliorates acute lung injury in rats. Shock 39:286-92
Uriarte, Silvia M; Rane, Madhavi J; Luerman, Gregory C et al. (2011) Granule exocytosis contributes to priming and activation of the human neutrophil respiratory burst. J Immunol 187:391-400
Luerman, Gregory C; Powell, David W; Uriarte, Silvia M et al. (2011) Identification of phosphoproteins associated with human neutrophil granules following chemotactic peptide stimulation. Mol Cell Proteomics 10:M110.001552
Luerman, Gregory C; Uriarte, Silvia M; Rane, Madhavi J et al. (2010) Application of proteomics to neutrophil biology. J Proteomics 73:552-61