Heart disease is the single largest killer of the American. A growing body of evidence has shown that there is a close relationship between Ca2+ handling abnormalities and development of heart disease. Therefore it is fundamentally important to understand the regulation of Ca2+ signaling under pathological conditions. Local control of Ca2+-induced Ca2+ release (CICR) depends on the spatial organization of L-type Ca2+ channels and ryanodine receptors (RyR) in the dyad. Analogously, Ca2+ uptake by mitochondria is facilitated by their close proximity to the Ca2+ release sites, a process required for stimulating oxidative phosphorylation during changes in work. Mitochondrial feedback on CICR, however, is less well understood. Since mitochondria are a primary source of reactive oxygen species (ROS), they could potentially influence the cytosolic redox state, in turn altering RyR open probability. In this proposed study, a two photon laser microscope system will be used to directly examine how acute changes in energy state dynamically influence Ca2+ spark properties under various experimental conditions. Cytosolic Ca2+ (or ROS), A^m, and NADH will be recorded simultaneously in isolated guinea pig cardiomyocytes and analyzed offline using imaged. The spatiotemporal coupling between mitochondria! depolarization and Ca2+ sparks will be analyzed using a quantitative approach. Furthermore, a computational model of mitochondria and Ca2+ release unit will be developed to quantitatively investigate the interaction between mitochondrial energetics and local Ca2+ handling. Finally, an integrated model of the cardiomyocyte incorporating substrate metabolism, cellular electrophysiology, pH regulation and E-C coupling will be developed to investigate the mechanisms underlying alterations in energy production, ion channels, Ca2+ handling and pH, as well as the resulting reduction of cardiac contractile function during ischemia-reperfusion. By combining the experimental and computational results, these studies will allow for a complete understanding the origin of post-ischemic injury and development of heart failure, and significantly spur the development of novel heart disease therapies.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Career Transition Award (K99)
Project #
1K99HL095648-01
Application #
7639770
Study Section
Special Emphasis Panel (ZHL1-CSR-Z (F2))
Program Officer
Carlson, Drew E
Project Start
2009-04-01
Project End
2011-03-31
Budget Start
2009-04-01
Budget End
2010-03-31
Support Year
1
Fiscal Year
2009
Total Cost
$75,868
Indirect Cost
Name
Johns Hopkins University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Sivakumaran, Vidhya; Stanley, Brian A; Tocchetti, Carlo G et al. (2013) HNO enhances SERCA2a activity and cardiomyocyte function by promoting redox-dependent phospholamban oligomerization. Antioxid Redox Signal 19:1185-97
Zhou, Lufang; Aon, Miguel A; Liu, Ting et al. (2011) Dynamic modulation of Ca2+ sparks by mitochondrial oscillations in isolated guinea pig cardiomyocytes under oxidative stress. J Mol Cell Cardiol 51:632-9
Zhou, Lufang; Aon, Miguel A; Almas, Tabish et al. (2010) A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network. PLoS Comput Biol 6:e1000657
Zhou, Lufang; Cortassa, Sonia; Wei, An-Chi et al. (2009) Modeling cardiac action potential shortening driven by oxidative stress-induced mitochondrial oscillations in guinea pig cardiomyocytes. Biophys J 97:1843-52