Heart disease is the single largest killer of the American. A growing body of evidence has shown that there is a close relationship between Ca2+ handling abnormalities and development of heart disease. Therefore it is fundamentally important to understand the regulation of Ca2+ signaling under pathological conditions. Local control of Ca2+-induced Ca2+ release (CICR) depends on the spatial organization of L-type Ca2+ channels and ryanodine receptors (RyR) in the dyad. Analogously, Ca2+ uptake by mitochondria is facilitated by their close proximity to the Ca2+ release sites, a process required for stimulating oxidative phosphorylation during changes in work. Mitochondrial feedback on CICR, however, is less well understood. Since mitochondria are a primary source of reactive oxygen species (ROS), they could potentially influence the cytosolic redox state, in turn altering RyR open probability. In this proposed study, a two photon laser microscope system will be used to directly examine how acute changes in energy state dynamically influence Ca2+ spark properties under various experimental conditions. Cytosolic Ca2+ (or ROS), A^m, and NADH will be recorded simultaneously in isolated guinea pig cardiomyocytes and analyzed offline using imaged. The spatiotemporal coupling between mitochondria! depolarization and Ca2+ sparks will be analyzed using a quantitative approach. Furthermore, a computational model of mitochondria and Ca2+ release unit will be developed to quantitatively investigate the interaction between mitochondrial energetics and local Ca2+ handling. Finally, an integrated model of the cardiomyocyte incorporating substrate metabolism, cellular electrophysiology, pH regulation and E-C coupling will be developed to investigate the mechanisms underlying alterations in energy production, ion channels, Ca2+ handling and pH, as well as the resulting reduction of cardiac contractile function during ischemia-reperfusion. By combining the experimental and computational results, these studies will allow for a complete understanding the origin of post-ischemic injury and development of heart failure, and significantly spur the development of novel heart disease therapies.
Sivakumaran, Vidhya; Stanley, Brian A; Tocchetti, Carlo G et al. (2013) HNO enhances SERCA2a activity and cardiomyocyte function by promoting redox-dependent phospholamban oligomerization. Antioxid Redox Signal 19:1185-97 |
Zhou, Lufang; Aon, Miguel A; Liu, Ting et al. (2011) Dynamic modulation of Ca2+ sparks by mitochondrial oscillations in isolated guinea pig cardiomyocytes under oxidative stress. J Mol Cell Cardiol 51:632-9 |
Zhou, Lufang; Aon, Miguel A; Almas, Tabish et al. (2010) A reaction-diffusion model of ROS-induced ROS release in a mitochondrial network. PLoS Comput Biol 6:e1000657 |
Zhou, Lufang; Cortassa, Sonia; Wei, An-Chi et al. (2009) Modeling cardiac action potential shortening driven by oxidative stress-induced mitochondrial oscillations in guinea pig cardiomyocytes. Biophys J 97:1843-52 |