Alzheimer?s disease (AD) is an incurable neurodegenerative disorder in which neuroinflammation is increasingly recognized to play a critical function. While innate inflammation has been implicated in AD, little is known about the contribution of the adaptive immune response. Preliminary data featured in this application demonstrate a peripheral immune signature of AD characterized by increased numbers of highly differentiated CD8+ T effector memory CD45RA+ (TEMRA) cells. Strikingly, CD8+ TEMRA cells were also present in-patient cerebrospinal fluid (CSF) and T cell receptor (TCR) sequencing indicated their clonal expansion, suggesting antigen specificity of these adaptive immune cells. TCR cloning and peptide screens demonstrated specificity of a subset of clonally expanded AD CSF TCRs to the Epstein-Barr virus (EBV) BZLF1 antigen. These results provide the first evidence of clonal, antigen-experienced T cells patrolling the intrathecal space of brains affected by age-related neurodegeneration. This K99/R00 application will test the novel theory of a detrimental adaptive immune response contributing to AD pathobiology.
In Specific Aim 1, AD blood-CSF T cell clonotypes will be related to CSF biomarkers. This approach will determine specific T cell populations in AD and whether these cells relate to disease severity.
In Specific Aim 2, antigen identification screens will be used to detect the self/non-self-antigen(s) driving T cell clonal expansion in AD. These assays could uncover a novel therapeutic target or biomarker for AD.
Specific Aim 3 will determine mechanisms of T cell-mediated neuronal death and resiliency in AD using induced neuronal (iN) cells co-cultured with patient CSF CD8+ T cells. These experiments will assess whether AD CSF CD8+ T cells mount cytotoxic effector responses to iN cells infected with EBV and/or to a molecular mimic of BZLF1. The candidate, Dr. David Gate, has extensive experience in T cell biology and has spent more than a decade studying AD. During the mentoring phase of this award, Dr.
Gate aims to advance his knowledge in next-generation sequencing analysis, sophisticated statistical methods, antigen screening, iN culturing methods and CRISPR gene editing. Dr. Gate's mentor and co-mentor, Dr. Tony Wyss-Coray and Dr. Mark Davis, respectively, have comprehensive expertise in these areas. They will provide an enriching environment for Dr. Gate to develop as a prominent independent investigator in neuroimmunology research. As an independent investigator, Dr. Gate will leverage the training under this fellowship to comprehensively and quantitatively evaluate the interactions between T cell molecular components and neurodegeneration.

Public Health Relevance

Due to increases in human lifespan, Alzheimer?s disease is rapidly becoming a public health crisis. This study will explore the role of antigen-specific T cells in Alzheimer?s, with the goal of identifying novel disease mechanisms and potential therapeutic targets for this devastating disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Career Transition Award (K99)
Project #
1K99NS112458-01A1
Application #
10054559
Study Section
Neurological Sciences Training Initial Review Group (NST)
Program Officer
Mcgavern, Linda
Project Start
2020-07-15
Project End
2022-06-30
Budget Start
2020-07-15
Budget End
2021-06-30
Support Year
1
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Stanford University
Department
Neurology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305