CBL mutations are common in chronic myelomonocytic leukemia (CMML), acute myeloid leukemia (AML), myelodysplastic syndrome, and clonal hematopoiesis of indeterminate potential (CHIP). CBL is an E3 ubiquitin ligase that recognizes phosphorylated receptor tyrosine kinases (RTKs) and mediates both downstream signaling and destruction of activated RTKs that are critical for leukemogenesis, including KIT, FLT3 and CSF2RB. (1, 2) There are no therapies that specifically address CBL-mutant leukemia, an ideal target for genotype-directed therapy. CBL is a central node for kinase signaling, and unlike most common mutations in leukemia, CBL mutations result in a gain-of-function, activating specific signaling pathways. CBL-mediated ubiquitination of activated tyrosine kinases triggers their proteasomal degradation, a negative feedback for ongoing signaling. In leukemia, CBL mutations specifically abolish the ubiquitin ligase activity, leaving CBL- mediated downstream signaling unchecked, resulting in prolonged kinase signaling and increased cellular proliferation. The central goal of this proposal is to understand the mechanistic basis of CBL mutations in order to identify the set of proteins and pathways that are dysregulated and can be targeted for the treatment of CBL- mutant leukemia.
In Aim 1, we will determine the specific phosphorylated proteins that are degraded by CBL in leukemia cells and stabilized when CBL is mutated, leading to constitutive signaling. Mechanistically, we will examine how specific point mutations in CBL alter the binding and ubiquitination of substrates, and the initiation of downstream signaling.
In Aim 2, we will investigate the combinations of kinase inhibitors with greatest therapeutic potential using both in vitro and in vivo models. Preliminary studies highlight the aberrant activation of LYN kinase and PI3K/AKT signaling pathways in cells with CBL RING domain mutations. We hypothesize that inhibiting these signaling pathways, and other kinases identified in Aim 1, will selectively target CBL-mutant cells and may have therapeutic activity in CBL-mutant myeloid malignancies. We will develop and characterize in vivo models of CMML with Cbl mutations, and test the efficacy of FDA approved drugs, dasatinib and dactolisib, alone and in combination.
In Aim 3, we will investigate the biology of the CRL5CISH ubiquitin ligase. Preliminary studies identified CRL5CISH ubiquitin ligase as a potential reserve for CBL, regulating an overlapping set of signaling pathways, but also degrading key signaling molecules that are not degraded by CBL. We will examine the biology of this CRL5CISH ubiquitin ligase in CBL wild-type and mutant cells. Manipulation of the activity of this ubiquitin ligase could alter ubiquitination of substrates that are aberrantly regulated in CBL-mutant leukemias. Overall, this project will elucidate the biology and therapeutic vulnerabilities in CBL-mutant leukemia. The project will leverage the expertise in ubiquitin ligase biology in the Ebert laboratory and across the P01. Since the pathways that are activated in CBL-mutant leukemias are signaling pathways, the recent development of drugs that target protein kinases will enable rapid clinical translation of the findings.

Public Health Relevance

Mutations in the CBL gene are common in leukemia, but there are currently no therapies specifically for patients with mutations in this gene. CBL mutations create opportunities for targeted therapy because these mutations lead to activation of signaling pathways that can be inhibited by FDA-approved drugs. We will identify the pathways that are activated when CBL is mutated, characterize the biology of these mutations, and test candidate therapies for CBL-mutant leukemia.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Program Projects (P01)
Project #
2P01CA066996-21
Application #
9854835
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
2025-04-30
Budget Start
2020-03-15
Budget End
2021-02-28
Support Year
21
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Weinberg, Olga K; Gibson, Christopher J; Blonquist, Traci M et al. (2018) Association of mutations with morphological dysplasia in de novo acute myeloid leukemia without 2016 WHO Classification-defined cytogenetic abnormalities. Haematologica 103:626-633
Hoshii, Takayuki; Cifani, Paolo; Feng, Zhaohui et al. (2018) A Non-catalytic Function of SETD1A Regulates Cyclin K and the DNA Damage Response. Cell 172:1007-1021.e17
Gutierrez-Martinez, Paula; Hogdal, Leah; Nagai, Manavi et al. (2018) Diminished apoptotic priming and ATM signalling confer a survival advantage onto aged haematopoietic stem cells in response to DNA damage. Nat Cell Biol 20:413-421
Gooptu, Mahasweta; Kim, Haesook T; Chen, Yi-Bin et al. (2018) Effect of Antihuman T Lymphocyte Globulin on Immune Recovery after Myeloablative Allogeneic Stem Cell Transplantation with Matched Unrelated Donors: Analysis of Immune Reconstitution in a Double-Blind Randomized Controlled Trial. Biol Blood Marrow Transplant 24:2216-2223
Kleppe, Maria; Koche, Richard; Zou, Lihua et al. (2018) Dual Targeting of Oncogenic Activation and Inflammatory Signaling Increases Therapeutic Efficacy in Myeloproliferative Neoplasms. Cancer Cell 33:29-43.e7
Nabet, Behnam; Roberts, Justin M; Buckley, Dennis L et al. (2018) The dTAG system for immediate and target-specific protein degradation. Nat Chem Biol 14:431-441
Ebert, Benjamin L; Krönke, Jan (2018) Inhibition of Casein Kinase 1 Alpha in Acute Myeloid Leukemia. N Engl J Med 379:1873-1874
List, Alan; Ebert, Benjamin L; Fenaux, Pierre (2018) A decade of progress in myelodysplastic syndrome with chromosome 5q deletion. Leukemia 32:1493-1499
Hshieh, Tammy T; Jung, Wooram F; Grande, Laura J et al. (2018) Prevalence of Cognitive Impairment and Association With Survival Among Older Patients With Hematologic Cancers. JAMA Oncol 4:686-693
Sellar, Rob S; Jaiswal, Siddhartha; Ebert, Benjamin L (2018) Predicting progression to AML. Nat Med 24:904-906

Showing the most recent 10 out of 376 publications