Vertebrate cells have adapted ancient signal transduction cascades that respond to changes in the environment. Ligand binding of receptor tyrosine kinases potently stimulates mitogen activated protein kinase (MAPK), whereas TNFalpha, IL-1, and UV-irradiation activates the stress- activated protein kinases (SAPK, also called JNK). The MAPK cascade consists of three kinases (raf/MEK/MAPK) that ultimately phosphorylate and activate transcription factors such as the ets-related TCF. The SAPK cascade leads to the phosphorylation and activation of c-jun. Recently, we isolated a cDNA, SEK1, from a murine erythroleukemia cell library that functions as an immediate upstream activator of SAPK. We also demonstrated that the kinase MEKK is an activator of SEK1, thus establishing the SAPK cascade (MEKK/SEK/SAPK). A third vertebrate cascade is stress-activated, and includes the kinase XMEK3 (also called MKK3), which activates a MAP kinase homolog called p38. We propose to determine which of these cascades are activated and/or required for normal erythropoiesis. Erythroid cells lines (i.e. MEL and Ba/F3) and normal erythroid progenitors will be transfected with vectors that express tagged MAPK, SAPK, or p38. Following extracellular stimulation to promote cell proliferation or differentiation (i.e. erythropoietin or DMSO), specific MAP kinase activity will be evaluated. Expression of dominant negative mutants of the specific activators (MEK, SEK, and XMEK3) will be used to define the requirement of each cascade for normal erythroid development and prevention of cell death. In yeast, ste20-like kinases function as upstream activators of MAPK cascades. We have isolated cDNAs encoding several distinct mouse homologs of ste20 that are expressed in erythroid cells and are likely to be upstream activators of vertebrate MAP kinase cascades. By constructing and expressing mutants of the ste20 kinase members, we plan to determine their function in erythroid cells. An analysis of the cascades activated by these ste20 family members and the upstream signals that lead to their activation will be undertaken. These studies will provide a better understanding of the role of the MAPK cascades in cell proliferation, death, or differentiation of hematopoietic cells. The pharmacologic manipulation of these pathways in vivo will be useful to treat anemia of chronic disease, sickle cell anemia, thalassemia and leukemia.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL032262-19
Application #
6336639
Study Section
Project Start
2000-07-01
Project End
2001-06-30
Budget Start
1997-10-01
Budget End
1998-09-30
Support Year
19
Fiscal Year
2000
Total Cost
$305,316
Indirect Cost
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Blaser, Bradley W; Zon, Leonard I (2018) Making HSCs in vitro: don't forget the hemogenic endothelium. Blood 132:1372-1378
Kafina, Martin D; Paw, Barry H (2018) Using the Zebrafish as an Approach to Examine the Mechanisms of Vertebrate Erythropoiesis. Methods Mol Biol 1698:11-36
Clement, Kendell; Farouni, Rick; Bauer, Daniel E et al. (2018) AmpUMI: design and analysis of unique molecular identifiers for deep amplicon sequencing. Bioinformatics 34:i202-i210
Liu, Frances D; Tam, Kimberley; Pishesha, Novalia et al. (2018) Improving hematopoietic recovery through modeling and modulation of the mesenchymal stromal cell secretome. Stem Cell Res Ther 9:268
Huang, Nai-Jia; Lin, Ying-Cing; Lin, Chung-Yueh et al. (2018) Enhanced phosphocholine metabolism is essential for terminal erythropoiesis. Blood 131:2955-2966
Schoonenberg, Vivien A C; Cole, Mitchel A; Yao, Qiuming et al. (2018) CRISPRO: identification of functional protein coding sequences based on genome editing dense mutagenesis. Genome Biol 19:169
Lessard, Samuel; Beaudoin, Mélissa; Orkin, Stuart H et al. (2018) 14q32 and let-7 microRNAs regulate transcriptional networks in fetal and adult human erythroblasts. Hum Mol Genet 27:1411-1420
Esrick, Erica B; Bauer, Daniel E (2018) Genetic therapies for sickle cell disease. Semin Hematol 55:76-86
Yien, Yvette Y; Shi, Jiahai; Chen, Caiyong et al. (2018) FAM210B is an erythropoietin target and regulates erythroid heme synthesis by controlling mitochondrial iron import and ferrochelatase activity. J Biol Chem 293:19797-19811
Wattrus, Samuel J; Zon, Leonard I (2018) Stem cell safe harbor: the hematopoietic stem cell niche in zebrafish. Blood Adv 2:3063-3069

Showing the most recent 10 out of 215 publications