The overall goals ofthe program project grant (PPG) and individual projects require primary human cells from the two human subjects protocols described in Core A (Clinical Core). The goal of Core B (Laboratory Core) is to process the clinical samples from the human subjects protocols to provide high quality cells to each project for planned in vitro experiments and future analysis of clinical samples. Specific Task 1: Isolate purified eosinophils (EOS) and other cell populations from peripheral blood donors. Subjects that have been well characterized by Core A (Clinical Core) for the blood donor protocol will be recruited for peripheral blood donation. Using gradient centrifugation and magnetic bead negative separation techniques, purified EOS and/or other cell types (e.g. monocytes and CD4^ T cells) will be prepared for in vitro experimental use by the PPG projects. Spcicific Task 2: Process bronchoalveolar lavage (BAL) samples to isolate EOS and other cell populations. BAL fluid derived from subjects enrolled in the Core A (Clinical Core) protocol will be collected. Using gradient centrifugation and other cell separation techniques, purified EOS and/or other cell types (e.g. monocytes and T cells) will be prepared for in vitro experimental use by the PPG projects. Specific Task 3: Adapt current protocols to the requirements of each project. Any ofthe protocols in the first two tasks and other EOS functional assays will be adapted for the needs of any project.

Public Health Relevance

The relevance ofthe Laboratory Core is to provide critical and high quality purified EOS from blood and BAL as well as monocytes, 004 T cells, and neutrophils from blood to the three projects to interrogate the role of EOS in airway remodeling associated with asthma.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL088594-08
Application #
8821651
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
2016-03-31
Budget Start
2015-04-01
Budget End
2016-03-31
Support Year
8
Fiscal Year
2015
Total Cost
$307,962
Indirect Cost
$96,813
Name
University of Wisconsin Madison
Department
Type
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Tomasini-Johansson, Bianca R; Mosher, Deane F (2018) Microtiter assays for quantitation of assembly of plasma and cellular fibronectin. Methods Cell Biol 143:157-170
Turton, Keren B; Wilkerson, Emily M; Hebert, Alex S et al. (2018) Expression of novel ""LOCGEF"" isoforms of ARHGEF18 in eosinophils. J Leukoc Biol 104:135-145
Bernau, Ksenija; Leet, Jonathan P; Esnault, Stephane et al. (2018) Eosinophil-degranulation products drive a proinflammatory fibroblast phenotype. J Allergy Clin Immunol 142:1360-1363.e3
Stallings, Nancy R; O'Neal, Melissa A; Hu, Jie et al. (2018) Pin1 mediates A?42-induced dendritic spine loss. Sci Signal 11:
Moon, Hyung-Geun; Kim, Seung-Jae; Jeong, Jong Jin et al. (2018) Airway Epithelial Cell-Derived Colony Stimulating Factor-1 Promotes Allergen Sensitization. Immunity 49:275-287.e5
Khoury, Paneez; Akuthota, Praveen; Ackerman, Steven J et al. (2018) Revisiting the NIH Taskforce on the Research needs of Eosinophil-Associated Diseases (RE-TREAD). J Leukoc Biol 104:69-83
Johansson, Mats W; Kelly, Elizabeth A; Nguyen, Christopher L et al. (2018) Characterization of Siglec-8 Expression on Lavage Cells after Segmental Lung Allergen Challenge. Int Arch Allergy Immunol 177:16-28
Evans, Michael D; Esnault, Stephane; Denlinger, Loren C et al. (2018) Sputum cell IL-1 receptor expression level is a marker of airway neutrophilia and airflow obstruction in asthmatic patients. J Allergy Clin Immunol 142:415-423
Esnault, Stephane; Hebert, Alexander S; Jarjour, Nizar N et al. (2018) Proteomic and Phosphoproteomic Changes Induced by Prolonged Activation of Human Eosinophils with IL-3. J Proteome Res 17:2102-2111
Bortnov, Valeriu; Annis, Douglas S; Fogerty, Frances J et al. (2018) Myeloid-derived growth factor is a resident endoplasmic reticulum protein. J Biol Chem 293:13166-13175

Showing the most recent 10 out of 106 publications