The primary goal of the Protocol Review and Monitoring System (PRMS) is to ensure that all human subjects research is of the highest scientific quality. This resource is available to over 1300 faculty members. Over the past 5 years, on average annual 542 faculty members utilized the PRMS and participated in human subjects research each year. PRMS is supported by 29 staff members under the direction of Dr. Maurie Markman, Vice President for Clinical Research. The core function of the PRMS is to provide a mechanism to assure adequate internal oversight of the scientific and research aspects of all institutional clinical trials. The focus is to review the scientific merit, progress, and priorities of the clinical research protocols conducted by the faculty. This function is coordinated by PRMS as a single source of service, support and oversight. The PRMS is made of up several subcommittees that are designated to provide scientific review and approval for new research protocols, as well as monitor the progress of the protocols. During the last five years, new services provided include a function that allows Regulatory Specialists to review new submissions for format and completeness of information and either reject or accept the submissions electronically. This includes the use of a specialized electronic information sheet (a resubmission memo) that lists amendments made prior to resubmitting the revised protocol document. This is a valuable tool that is also used during the review process when a protocol is initially submitted. The electronic review document provided by each assigned reviewer during the scientific review process can be compared to this resubmission memo to ensure all items of concern have been addressed by the investigator. Additionally, the electronic protocol eligibility, abstract, and informed consent documents for all trials that have been submitted through the PDOL are made available on an intranet web page that is accessible by the patient care units. The navigational web page provides protocol status information as well, including when a protocol has been closed to new subject accrual. This allows caregivers to have ready access to current protocol information from time of activation, during new subject accrual and treatment though completion of the protocol. This information is provided in real time and no delays occur after regulatory approval of the protocol. During the last fiscal year, the funds used to support the PRMS function were $246,418 (15%) from the Cancer Center Support Grant (CCSG), $172,163 (10%) from user fees, and $1,259,771 (75%) from the institution. It is projected that in the next award cycle, the increase in support provided by the CCSG will alter the sources of funds such that the percentages provided by the CCSG ($258,228), the user fees ($286,937) and the institution ($1,526,868), will be 12%, 14% and 74%, respectively. The PRMS supported 2739 protocols from 599 cancer center members, of which 81% hold peer-reviewed funding. During the last several years, the number of new protocols managed by PRMS has remained constant. Protocols that do not meet the UTMDACC scientific standards are typically withdrawn from submission and review. While the volume of protocols has not increased, the activity involved in oversight has become increasingly more detailed due to the evolution of regulatory requirements.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Center Core Grants (P30)
Project #
5P30CA016672-35
Application #
8144406
Study Section
Subcommittee G - Education (NCI)
Project Start
Project End
Budget Start
2010-07-01
Budget End
2011-06-30
Support Year
35
Fiscal Year
2010
Total Cost
$378,503
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Hui, David; Hess, Kenneth; Dibaj, Seyedeh S et al. (2018) The minimal clinically important difference of the Richmond Agitation-Sedation Scale in patients with cancer with agitated delirium. Cancer 124:2246-2252
LeBleu, Valerie S; Kalluri, Raghu (2018) A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis Model Mech 11:
Liu, Yang; Sethi, Nilay S; Hinoue, Toshinori et al. (2018) Comparative Molecular Analysis of Gastrointestinal Adenocarcinomas. Cancer Cell 33:721-735.e8
Saintigny, Pierre; Mitani, Yoshitsugu; Pytynia, Kristen B et al. (2018) Frequent PTEN loss and differential HER2/PI3K signaling pathway alterations in salivary duct carcinoma: Implications for targeted therapy. Cancer 124:3693-3705
Jiang, Xuejie; Mak, Po Yee; Mu, Hong et al. (2018) Disruption of Wnt/?-Catenin Exerts Antileukemia Activity and Synergizes with FLT3 Inhibition in FLT3-Mutant Acute Myeloid Leukemia. Clin Cancer Res 24:2417-2429
Saltz, Joel; Gupta, Rajarsi; Hou, Le et al. (2018) Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images. Cell Rep 23:181-193.e7
Dondossola, Eleonora; Alexander, Stephanie; Holzapfel, Boris M et al. (2018) Intravital microscopy of osteolytic progression and therapy response of cancer lesions in the bone. Sci Transl Med 10:
Yue, Jinbo; Shi, Qiuling; Xu, Ting et al. (2018) Patient-reported lung symptoms as an early signal of impending radiation pneumonitis in patients with non-small cell lung cancer treated with chemoradiation: an observational study. Qual Life Res 27:1563-1570
Allen, Julie K; Armaiz-Pena, Guillermo N; Nagaraja, Archana S et al. (2018) Sustained Adrenergic Signaling Promotes Intratumoral Innervation through BDNF Induction. Cancer Res 78:3233-3242
Nguyen, Tuan M; Kabotyanski, Elena B; Dou, Yongchao et al. (2018) FGFR1-Activated Translation of WNT Pathway Components with Structured 5' UTRs Is Vulnerable to Inhibition of EIF4A-Dependent Translation Initiation. Cancer Res 78:4229-4240

Showing the most recent 10 out of 12418 publications