TR&D Project 2. The Analysis Stage I: Tools for Analyzing the Composition and Stoichiometry of Macromolecular Assemblies The determination and quantitation of proteins within assemblies remain a significant challenge, as proteins carry much of the burden of the rapid dynamic responses of the cell and are incredibly diverse in their abundance and their physico-chemical properties, making them highly versatile for the dynamic tasks at hand but at the same time difficult to analyze. This TR&D will allow the researcher to quantitatively characterize the constitution of isolated assemblies, and achieve this objective with a fraction of the time, effort, and resources normally required. Thus, we will develop methods to faithfully and fully identify the bone fide components of any target macromolecular complex in the cell, as well as that of vicinal associators, with high accuracy and throughput. We will advance current quantitative approaches for determining complex composition. We will also provide the community with a suite of options for discriminating between specific interactors and contaminants.We will also develop methods to faithfully and fully identify with high accuracy the stoichiometry of any target macromolecular complex in the cell. We will provide this technology to the community in the form of a ?Stoichiometry Package?. This package will incorporate a parallel suite of techniques that give complementary and cross-verifying information, collectively providing accurate, comprehensive sets of stoichiometry data (and dynamic changes) for an isolated assembly. Users can choose any or a combination of approaches, depending on need. We will also gather data that inform on the dynamics of macromolecular complexes, by isolating complexes in defined sequences in space and time; comparisons of how the complexes change with time or different assembly state in terms of composition and stoichiometry will allow reconstruction of these dynamic processes. The major challenge we are addressing here is to achieve these goals with high fidelity in a mode that is readily transportable to any researcher.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Biotechnology Resource Grants (P41)
Project #
2P41GM109824-06
Application #
9705153
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
2019-05-01
Budget End
2020-04-30
Support Year
6
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Rockefeller University
Department
Type
DUNS #
071037113
City
New York
State
NY
Country
United States
Zip Code
10065
Holden, Jennifer M; Koreny, Ludek; Obado, Samson et al. (2018) Involvement in surface antigen expression by a moonlighting FG-repeat nucleoporin in trypanosomes. Mol Biol Cell 29:1100-1110
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Taylor, Martin S; Altukhov, Ilya; Molloy, Kelly R et al. (2018) Dissection of affinity captured LINE-1 macromolecular complexes. Elife 7:
Chan, Ho Lam; Beckedorff, Felipe; Zhang, Yusheng et al. (2018) Polycomb complexes associate with enhancers and promote oncogenic transcriptional programs in cancer through multiple mechanisms. Nat Commun 9:3377
Zinoviev, Alexandra; Goyal, Akanksha; Jindal, Supriya et al. (2018) Functions of unconventional mammalian translational GTPases GTPBP1 and GTPBP2. Genes Dev 32:1226-1241
Schrank, Benjamin R; Aparicio, Tomas; Li, Yinyin et al. (2018) Nuclear ARP2/3 drives DNA break clustering for homology-directed repair. Nature 559:61-66
Hua, Nan; Tjong, Harianto; Shin, Hanjun et al. (2018) Producing genome structure populations with the dynamic and automated PGS software. Nat Protoc 13:915-926
Hayama, Ryo; Sparks, Samuel; Hecht, Lee M et al. (2018) Thermodynamic characterization of the multivalent interactions underlying rapid and selective translocation through the nuclear pore complex. J Biol Chem 293:4555-4563
Guy, Andrew J; Irani, Vashti; Beeson, James G et al. (2018) Proteome-wide mapping of immune features onto Plasmodium protein three-dimensional structures. Sci Rep 8:4355
Sparks, Samuel; Temel, Deniz B; Rout, Michael P et al. (2018) Deciphering the ""Fuzzy"" Interaction of FG Nucleoporins and Transport Factors Using Small-Angle Neutron Scattering. Structure 26:477-484.e4

Showing the most recent 10 out of 111 publications