This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Proteolysis plays an important role in the regulation of diverse biological processes. One such process is apoptosis, in which at least 280 proteins are known to undergo proteolytic processing as part of the biochemical events leading to programmed cell death. Adding to this complexity, the nature of the apoptotic response can vary depending on the apoptotic stimulus and the cell type in a manner that cannot always be predicted. Unfortunately, current methods for monitoring proteolytic events in complex samples suffer from serious limitations.
The aim of this work is to establish a novel method for global profiling of proteolysis in complex biochemical mixtures that is sensitive, robust, and general. This method will be based on the use of an engineered peptide ligase to selectively label protein N-termini in cell lysates. The label will permit affinity purification and enrichment of N-terminal peptides for subsequent sequencing by tandem mass spectrometry. Identification of N-termini present in experimental samples and absent in control samples will be indicative of a proteolytic event at the sequenced amino acid site. Analysis of proteolysis in apoptosis will at first be used as a model system for method development. A matured version of the method will then be applied to survey the diversity of proteolysis patterns in apoptosis elicited by different stimuli and in different cell types, and to identify new targets of proteolysis in apoptosis. This work will shed new light on the biology of apoptosis and will establish a novel proteomic method that will find application to the study of proteolysis in other areas of biology. The UCSF Mass Spectrometry Facility will provide the mass spectrometry instrumentation, software, and expertise essential for the success of this work.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
2P41RR001614-25
Application #
7601853
Study Section
Special Emphasis Panel (ZRG1-BCMB-M (40))
Project Start
2007-09-30
Project End
2008-05-31
Budget Start
2007-09-30
Budget End
2008-05-31
Support Year
25
Fiscal Year
2007
Total Cost
$401
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
MacRae, Andrew J; Mayerle, Megan; Hrabeta-Robinson, Eva et al. (2018) Prp8 positioning of U5 snRNA is linked to 5' splice site recognition. RNA 24:769-777
Katsuno, Yoko; Qin, Jian; Oses-Prieto, Juan et al. (2018) Arginine methylation of SMAD7 by PRMT1 in TGF-?-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293:13059-13072
Sahoo, Pabitra K; Smith, Deanna S; Perrone-Bizzozero, Nora et al. (2018) Axonal mRNA transport and translation at a glance. J Cell Sci 131:
Tran, Vy M; Wade, Anna; McKinney, Andrew et al. (2017) Heparan Sulfate Glycosaminoglycans in Glioblastoma Promote Tumor Invasion. Mol Cancer Res 15:1623-1633
Liu, Tzu-Yu; Huang, Hector H; Wheeler, Diamond et al. (2017) Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Cell Syst 4:636-644.e9
Bikle, Daniel D (2016) Extraskeletal actions of vitamin D. Ann N Y Acad Sci 1376:29-52
Twiss, Jeffery L; Fainzilber, Mike (2016) Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 15:341-3
Cil, Onur; Phuan, Puay-Wah; Lee, Sujin et al. (2016) CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation. Cell Mol Gastroenterol Hepatol 2:317-327
Posch, Christian; Sanlorenzo, Martina; Vujic, Igor et al. (2016) Phosphoproteomic Analyses of NRAS(G12) and NRAS(Q61) Mutant Melanocytes Reveal Increased CK2? Kinase Levels in NRAS(Q61) Mutant Cells. J Invest Dermatol 136:2041-2048
Julien, Olivier; Zhuang, Min; Wiita, Arun P et al. (2016) Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A 113:E2001-10

Showing the most recent 10 out of 630 publications