New neuroscientific methods are required to better define the relationships of aberrant brain morphology in schizophrenia. Focusing on structures as part of complex functional circuitry is extremely important for isolating pathology in schizophrenic brains. Mapping variability in isolated structures is however necessary to reveal the unique variability within populations and to provide a quantitative measurement of anatomical displacement in diseased brains. Such methods promise to answer questions about the relationships between neuroanatornical structures in schizophrenia and in normal controls. For example, the corpus callosum may not differ across populations by conventional morphometric measurements, including area, length and width. However, analysis of shape, curvature and variability within the structure may reveal that the callosum, is displaced in the vertical axis in schizophrenic patients as compared to normal controls. The curvature too may be different. Such findings imply that the callosum is displaced by the underlying anatomy and this displacement is unique to schizophrenic brains. Furthermore, the altered location of a structure may reciprocally affect the displacement of other structures. Sirnilarly, analysis of regions of variability within the lateral ventricles may reveal subtle complex differences between populations whether or not there is ventricular enlargement. These methods can also point to otherwise indistinguishable asymmetries in neuroanatomy. Variability and displacement maps can therefore provide distinct hypothese s about morphological changes in schizophrenic patients and elucidate the developmental changes that may be causal to the syndrome. These methods along with traditional structural parameter analysis and tissue segmentation can give us invaluable insight into pathological processes in schizophrenia. Such findings can, (1) support links between neuroanatomical abnormalities and behavior; (2) provide clues to timing in anomalous neurodevelopment; (3) guide us to the regions where neuroanatomy is maximally displaced; (4) allow us to follow the progression of neuroanatomical changes in individual schizophrenic patients over time; (5) compare regions of variability between schizophrenia subgroups and their differences from normal populations. Specific neuroanatomic loss of volume may also be located by the relationships of displacement within functional circuitry.
Showing the most recent 10 out of 554 publications