Protein kinases are arguably the most tractable candidates for development of new therapies to treat breast cancer. Recent data has shown that kinase cascades and signaling pathways are interrelated;inhibition by one pharmacologic kinase inhibitor has consequences beyond its cognate targets. Our hypothesis predicts that defining tumor kinome activity, and overall kinome-level response to therapy, will identify kinase signatures that can be targeted to accelerate development of new therapies for clinical trials. Project 5 uses an innovative new technology to study the kinome in the Basal-like and Claudin-low subtypes elucidating novel kinase targets and defining differences between these two subtypes. The technology affinity captures endogenous kinases and analyzes their activity with quantitative mass spectrometry, providing us with large scale, kinome activity profiles in tumors and cells. The quantitative proteomic assessment can also be used in dynamic tests determining what fraction of the kinome responds to inhibition of targeted kinases. The Raf- MEK-ERK pathway is often activated in Basal-like and Claudin-low breast cancer. For proof of concept, we defined the kinome response to MEK inhibition in a Claudin-low cell line and mouse tumor model of Basallike/ Claudin-low breast cancer. The tumor response to targeted kinase inhibition involved a highly reproducible induction and activation of multiple RTKs that contributed to drug resistance. Given the repertoire of RTKs whose expression and activity was induced with MEK inhibition, we predicted that a combination therapy that would """"""""broaden"""""""" the kinase targeting sufficiently to produce significant therapeutic benefit. The combination therapy increased apoptosis and tumor regression in genetically-engineered models of TNBC. The response was significant compared to either drug alone. Thus, we created a signature of therapeutic response resistance allowing a rational prediction of combinatorial therapies. This approach will be used to create signatures of kinome response to MEK inhibitors, PI3K inhibitors and other kinase inhibitors (both clinically available and in development) using Claudin-low and Basal-like breast cancer cells, GEMMs and patient-derived xenografts. A window trial in patients with TNBC, performed in collaboration with GlaxoSmithKline using their MEK inhibitor, is currently in clinical trials. The trial will provide dynamic data for comparison to that obtained in cell lines, GEMMs and patient-derived xenografts. The window trial will be first to assess kinome reprogramming with the goal of potentially allowing rational prediction of combination therapies in a patient.

Public Health Relevance

Defining the activation state of kinases in patient tumors and response of tumor kinases to drug treatment identifies previously untargeted kinases essential for tumor growth and survival. Our experimental rationale will allow the design of new clinical trials involving combinations of kinase inhibitors based on properties of the kinome in Claudin-low and Basal-like breast cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA058223-21
Application #
8723747
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
21
Fiscal Year
2014
Total Cost
$168,933
Indirect Cost
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Tanioka, Maki; Mott, Kevin R; Hollern, Daniel P et al. (2018) Identification of Jun loss promotes resistance to histone deacetylase inhibitor entinostat through Myc signaling in luminal breast cancer. Genome Med 10:86
Tanioka, Maki; Fan, Cheng; Parker, Joel S et al. (2018) Integrated Analysis of RNA and DNA from the Phase III Trial CALGB 40601 Identifies Predictors of Response to Trastuzumab-Based Neoadjuvant Chemotherapy in HER2-Positive Breast Cancer. Clin Cancer Res 24:5292-5304
Mundt, Filip; Rajput, Sandeep; Li, Shunqiang et al. (2018) Mass Spectrometry-Based Proteomics Reveals Potential Roles of NEK9 and MAP2K4 in Resistance to PI3K Inhibition in Triple-Negative Breast Cancers. Cancer Res 78:2732-2746
Takaku, Motoki; Grimm, Sara A; Roberts, John D et al. (2018) GATA3 zinc finger 2 mutations reprogram the breast cancer transcriptional network. Nat Commun 9:1059
Butler, Eboneé N; Bensen, Jeannette T; Chen, Mengjie et al. (2018) Prediagnostic Smoking Is Associated with Binary and Quantitative Measures of ER Protein and ESR1 mRNA Expression in Breast Tumors. Cancer Epidemiol Biomarkers Prev 27:67-74
Echavarria, Isabel; López-Tarruella, Sara; Picornell, Antoni et al. (2018) Pathological Response in a Triple-Negative Breast Cancer Cohort Treated with Neoadjuvant Carboplatin and Docetaxel According to Lehmann's Refined Classification. Clin Cancer Res 24:1845-1852
Cai, Ling; Tsai, Yi-Hsuan; Wang, Ping et al. (2018) ZFX Mediates Non-canonical Oncogenic Functions of the Androgen Receptor Splice Variant 7 in Castrate-Resistant Prostate Cancer. Mol Cell 72:341-354.e6
Bensen, Jeannette T; Graff, Mariaelisa; Young, Kristin L et al. (2018) A survey of microRNA single nucleotide polymorphisms identifies novel breast cancer susceptibility loci in a case-control, population-based study of African-American women. Breast Cancer Res 20:45
Puvanesarajah, Samantha; Nyante, Sarah J; Kuzmiak, Cherie M et al. (2018) PAM50 and Risk of Recurrence Scores for Interval Breast Cancers. Cancer Prev Res (Phila) 11:327-336
Knott, Simon R V; Wagenblast, Elvin; Khan, Showkhin et al. (2018) Asparagine bioavailability governs metastasis in a model of breast cancer. Nature 554:378-381

Showing the most recent 10 out of 598 publications