The Career Enhancement Program (CEP) exists to identify, support, and mentor candidates with promising independent careers in translational research. The CEP also represents an opportunity to encourage new and established non-translational investigators, including women and minorities, to consider careers in translational research. In this manner the program ultimately serves as a means to expand translational research, as well as a source of translational projects and investigators for the SPORE Program itself.
The Specific Aims of the UCSF Brain Tumor SPORE CEP are: 1. To identify, support, and mentor individuals with promising careers in translational brain tumor research 2. To encourage new and established investigators to develop careers in translational brain tumor research. 3. To encourage women and minorities to pursue careers in translational brain tumor research.

Public Health Relevance

The Career Enhancement Program is required component of all SPOREs and must be maintained for the entire funding period. Funds provided by the UCSF Brain Tumor SPORE, supplemented by funds provided by the UCSF Department of Neurological Surgery through the Helen Diller Family Comprehensive Cancer Center (HDFCCC), allow the SPORE to provide $50,000 direct costs for up to three CEP projects per year.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA097257-18
Application #
9999435
Study Section
Special Emphasis Panel (ZCA1)
Project Start
2002-09-20
Project End
2023-08-31
Budget Start
2020-09-01
Budget End
2021-08-31
Support Year
18
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Type
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94118
Hayes, Josie; Yu, Yao; Jalbert, Llewellyn E et al. (2018) Genomic analysis of the origins and evolution of multicentric diffuse lower-grade gliomas. Neuro Oncol 20:632-641
Ostrom, Quinn T; Kinnersley, Ben; Armstrong, Georgina et al. (2018) Age-specific genome-wide association study in glioblastoma identifies increased proportion of 'lower grade glioma'-like features associated with younger age. Int J Cancer 143:2359-2366
Pekmezci, Melike; Stevers, Meredith; Phillips, Joanna J et al. (2018) Multinodular and vacuolating neuronal tumor of the cerebrum is a clonal neoplasm defined by genetic alterations that activate the MAP kinase signaling pathway. Acta Neuropathol 135:485-488
Behr, Spencer C; Villanueva-Meyer, Javier E; Li, Yan et al. (2018) Targeting iron metabolism in high-grade glioma with 68Ga-citrate PET/MR. JCI Insight 3:
Taylor, Jennie W; Parikh, Mili; Phillips, Joanna J et al. (2018) Phase-2 trial of palbociclib in adult patients with recurrent RB1-positive glioblastoma. J Neurooncol 140:477-483
Luks, Tracy L; McKnight, Tracy Richmond; Jalbert, Llewellyn E et al. (2018) Relationship of In Vivo MR Parameters to Histopathological and Molecular Characteristics of Newly Diagnosed, Nonenhancing Lower-Grade Gliomas. Transl Oncol 11:941-949
Viswanath, Pavithra; Radoul, Marina; Izquierdo-Garcia, Jose Luis et al. (2018) 2-Hydroxyglutarate-Mediated Autophagy of the Endoplasmic Reticulum Leads to an Unusual Downregulation of Phospholipid Biosynthesis in Mutant IDH1 Gliomas. Cancer Res 78:2290-2304
An, Zhenyi; Knobbe-Thomsen, Christiane B; Wan, Xiaohua et al. (2018) EGFR Cooperates with EGFRvIII to Recruit Macrophages in Glioblastoma. Cancer Res 78:6785-6794
Mancini, Andrew; Xavier-Magalhães, Ana; Woods, Wendy S et al. (2018) Disruption of the ?1L Isoform of GABP Reverses Glioblastoma Replicative Immortality in a TERT Promoter Mutation-Dependent Manner. Cancer Cell 34:513-528.e8
Disney-Hogg, Linden; Sud, Amit; Law, Philip J et al. (2018) Influence of obesity-related risk factors in the aetiology of glioma. Br J Cancer 118:1020-1027

Showing the most recent 10 out of 362 publications