Defects in ion and water regulation in the kidney have been associated with numerous diseases including, nephrogenic diabetes insipidus, hypertension, Bartter syndrome, Gitelman syndrome, pseudo-hypoaldosteronism type 1 and Liddle syndrome. Salt and water transport in the cortical collecting duct (CCD) of the kidney is mediated through specific channels which are tightly controlled by hormonal feedback mechanisms. The proposed studies will define and characterize novel mechanisms of channel regulation by vesicle trafficking and recycling. The studies aim to investigate whether three of the most common transporters at the CCD apical membranes, namely the epithelial sodium, potassium and water channels are co-localized and co-regulated by vesicle trafficking. Studies using a mouse CCD cell line will define the underlying physiological regulation of these trafficking events. Studies will identify specific cell machinery important in the regulated recycling of these channels. A multidisciplinary approach will first identify the sub-cellular vesicle trafficking compartments by immuno-cytochemical labeling and fluorescent and electron microscopic imaging. Next, the localization of channels in these vesicle compartments will be verified biochemically. The dynamics of the trafficking events will be determined using live-cell imaging and electrophysiological techniques. Finally, the mechanisms which regulate the recycling of these channels will be elucidated. By investigating the role of Rab-proteins in regulated channel recycling the essential cellular components involved in channel trafficking will be determined. These basic cell biological studies will further an understanding of water and ion channel regulation in the kidney. This will help not only to understand the essential homeostatic processes involved in salt and water balance, but more importantly, the work will provide insights into underlying defects in this regulation associated with channel misregulation which result in pathophysiological disease states.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Transition Award (R00)
Project #
4R00DK078917-03
Application #
8049894
Study Section
Special Emphasis Panel (NSS)
Program Officer
Ketchum, Christian J
Project Start
2008-04-01
Project End
2013-03-31
Budget Start
2010-05-03
Budget End
2011-03-31
Support Year
3
Fiscal Year
2010
Total Cost
$248,999
Indirect Cost
Name
University of Pittsburgh
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
004514360
City
Pittsburgh
State
PA
Country
United States
Zip Code
15213
Roy, Ankita; Al-Qusairi, Lama; Donnelly, Bridget F et al. (2015) Alternatively spliced proline-rich cassettes link WNK1 to aldosterone action. J Clin Invest 125:3433-48
Butterworth, Michael B; Zhang, Liang; Liu, Xiaoning et al. (2014) Modulation of the epithelial sodium channel (ENaC) by bacterial metalloproteases and protease inhibitors. PLoS One 9:e100313
Edinger, Robert S; Coronnello, Claudia; Bodnar, Andrew J et al. (2014) Aldosterone regulates microRNAs in the cortical collecting duct to alter sodium transport. J Am Soc Nephrol 25:2445-57
Bertuccio, Claudia A; Lee, Shih-Liang; Wu, Guangyu et al. (2014) Anterograde trafficking of KCa3.1 in polarized epithelia is Rab1- and Rab8-dependent and recycling endosome-independent. PLoS One 9:e92013
Thibodeau, P H; Butterworth, M B (2013) Proteases, cystic fibrosis and the epithelial sodium channel (ENaC). Cell Tissue Res 351:309-23
Butterworth, Michael B; Zhang, Liang; Heidrich, Elisa M et al. (2012) Activation of the epithelial sodium channel (ENaC) by the alkaline protease from Pseudomonas aeruginosa. J Biol Chem 287:32556-65
Edinger, Robert S; Bertrand, Carol A; Rondandino, Christine et al. (2012) The epithelial sodium channel (ENaC) establishes a trafficking vesicle pool responsible for its regulation. PLoS One 7:e46593
Myerburg, Michael M; Harvey, Peter R; Heidrich, Elisa M et al. (2010) Acute regulation of the epithelial sodium channel in airway epithelia by proteases and trafficking. Am J Respir Cell Mol Biol 43:712-9
Butterworth, Michael B (2010) Regulation of the epithelial sodium channel (ENaC) by membrane trafficking. Biochim Biophys Acta 1802:1166-77
Liang, Xiubin; Butterworth, Michael B; Peters, Kathryn W et al. (2010) AS160 modulates aldosterone-stimulated epithelial sodium channel forward trafficking. Mol Biol Cell 21:2024-33

Showing the most recent 10 out of 13 publications