Dr. Chunqi Qian is applying for the K99/R00 career transition award in preparation for his immediate career goal to become an independent faculty member in an academic institution. Dr. Qian's long term career goal is to develop advanced detection technologies for the next generation MRI diagnosis with better sensitivity and accuracy. To achieve this goal, Dr. Qian has been continuously working in the research field of magnetic resonance for many years. His PhD thesis work was highlighted by the prestigious professional journal, the Journal of Magnetic Resonance, for his novel implementation of the wireless coupling technique in the construction of a variable angle MR detector. During his postdoctoral research at the National High Magnetic Field Laboratory, Dr. Qian successfully constructed a broad range tunable detector with good homogeneity and efficiency for the world's highest field MRI at 21.1 Tesla. This important progress has thus enabled the practical exploitation of high field magnet for biomedical imaging. This work has also been honored by the Young Investigator Award during the International Conference in Magnetic Resonance Microscopy. As a research fellow at NIH, Dr. Qian has for the first time developed a very promising technology that can greatly enhance the MRI detection sensitivity of internal organs, based on the innovative design concept of wireless amplified detection. This new technology has already been applied to obtain high resolution images of rodent kidney in vivo, enabling the detection of individual glomeruli and renal tubules. To further improve the imaging resolution, Dr. Qian will reduce the motional artifact by dynamically tracking the object motion with implanted detector itself, as is mentioned in Aim 1. To maximize the image contrast, Dr. Qian will use different contrast agents to visualize different components of nephron and correlate these high resolution images with histological studies, as is mentioned in Aim 2. These two specific aims will be accomplished under the mentorship of Dr. Alan Koretsky, during which time Dr. Qian will receive complete support from the NINDS. After Dr. Qian obtains an independent faculty position, he will continue the development of the wireless amplifier technology and exploit its biomedical applications. As is summarized in Aim 3, Dr. Qian will fabricate miniaturized wireless amplified detectors with microfabrication techniques. As is summarized in Aim 4, Dr. Qian will construct arrayed wireless detectors to get a bigger field-of-view, where each detector can be individually manipulated by a specific pumping signal. It is anticipated that further development of the wireless amplifier technology will lead to such applications as the chronic monitoring of engineered tissues and the in situ chemical sensing inside the digestive track.
This project seeks to develop a generally applicable technology that can greatly enhance the MRI detection sensitivity of internal organs by in situ amplification of the weak MR signals with a wireless power source. This new MRI detection technology will be very useful for disease diagnosis with better sensitivity and accuracy.
Showing the most recent 10 out of 17 publications