To study the architecture and dynamics of immune responses as they occur, the phenotypic and genotypic hallmarks of clonally restricted immune responses may be used to identify and characterize antigen-specific lymphocyte populations in histological sections of frozen spleen. We shall take advantage of the clonally restricted T- and B cell response of B10.A mice to pigeon cytochrome c (PCC) conjugated with (4-hydroxy-3- nitrophenyl) acetyl (NP) to identify and characterize antigen-specific lymphocyte populations in situ. Enzyme- and fluorochrome labeled antibodies and lectins will be used to follow the population and spatial dynamics of responding T cells in reference to the splenic anatomy, association with antigen-presenting cells, and interaction with specific B lymphocytes. BrdUrd- and Tdt-labeling will be used to follow T cell proliferation and programmed death in situ. Microdissection of small T cell populations or single cells from histologic sections will be used in conjunction with the PCR amplification of canonical V(D)J alpha- and beta- chain rearrangements to study the somatic genetics of responding cells. Transfection and expression of cloned V(D)J fragments in a reporter cell liner will allow the reconstruction and study of TCR phenotypes of single microdissected cells. These techniques have made possible the first in situ studies of T cell competition and selection in response to antigen, insight into cellular collaboration in the T- and B zones of the spleen, and the character of dominant TCR phenotypes. Together, these studies lay the foundation for creating a true population genetics for the T and B lymphocytes that mount an immune response.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Project (R01)
Project #
Application #
Study Section
Immunobiology Study Section (IMB)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Duke University
Schools of Medicine
United States
Zip Code
Dal Porto, Joseph M; Haberman, Ann M; Kelsoe, Garnett et al. (2002) Very low affinity B cells form germinal centers, become memory B cells, and participate in secondary immune responses when higher affinity competition is reduced. J Exp Med 195:1215-21
Cerasoli, D M; Kelsoe, G; Sarzotti, M (2001) CD4+Thy1- thymocytes with a Th-type 2 cytokine response. Int Immunol 13:75-83
Chen, Z; Koralov, S B; Kelsoe, G (2000) Regulation of humoral immune responses by CD21/CD35. Immunol Rev 176:194-204
Chen, Z; Koralov, S B; Gendelman, M et al. (2000) Humoral immune responses in Cr2-/- mice: enhanced affinity maturation but impaired antibody persistence. J Immunol 164:4522-32
Chen, Z; Koralov, S B; Kelsoe, G (2000) Complement C4 inhibits systemic autoimmunity through a mechanism independent of complement receptors CR1 and CR2. J Exp Med 192:1339-52
Takahashi, Y; Cerasoli, D M; Dal Porto, J M et al. (1999) Relaxed negative selection in germinal centers and impaired affinity maturation in bcl-xL transgenic mice. J Exp Med 190:399-410
Yang, K; Davila, M; Kelsoe, G (1999) Do germinal centers have a role in the generation of lymphomas? Curr Top Microbiol Immunol 246:53-60;discussion 61-2
Dal Porto, J M; Haberman, A M; Shlomchik, M J et al. (1998) Antigen drives very low affinity B cells to become plasmacytes and enter germinal centers. J Immunol 161:5373-81
Takahashi, Y; Dutta, P R; Cerasoli, D M et al. (1998) In situ studies of the primary immune response to (4-hydroxy-3-nitrophenyl)acetyl. V. Affinity maturation develops in two stages of clonal selection. J Exp Med 187:885-95
Kelsoe, G (1996) The germinal center: a crucible for lymphocyte selection. Semin Immunol 8:179-84