Alzheimer's disease (AD) is characterized by the severe loss of cholinergic neurons and depositions of amyloid beta peptide (Abeta). Three FDA- approved drugs (tacrine, donepezil and rivastigmine) for treating AD subjects belong to the category of cholinesterase (ChE) inhibitor (ChEI), which works by increasing the brain's supply of acetylcholine, a nerve communication chemical that is deficient in AD. These drugs are approved for treatment of mild to moderate AD and may not be as useful in more advanced stages. Our goal is to study the mechanism of ChEI drugs on amyloidogenic pathways that process beta-amyloid precursor protein (APP) to potentially neurotoxic Abeta. Such study is significant as there is increasing evidence that Abeta plays an important role in AD pathogenesis. This proposal is based on our discovery that treating cultured cells with certain ChEIs, such as tacrine and phenserine, significantly reduced levels of secreted APP (sAPP) and Abeta and may serve to slow the progression of AD as well as improve cognition. Notably, the mechanism of reduction of Abeta did not increase known alternative processing pathways and may therefore be less damaging. We are interested in identification of the mechanisms by which ChEIs block Abeta secretion to take advantage of the Abeta lowering property in developing novel therapeutic agents. SPEC.
AIMS :
The specific aims are: 1. To study the effects of acetyl- ChEI (AChEI) and butyrl-ChEI (BchEI) on sAPP and Abeta levels. To examine the specificity of their actions, effects of i) AchEI (e.g., pheneserine) ii)BChEI (e.g. cymserine), and iii) compounds that are tacrine-derivatives (e.g. velnacrine) will be tested to identify structural aspects that lower Abeta. 2. To investigate the role of ChEIs on APP metabolism. Effects of ChEIs on i)APP processing in FAD-APP mutant cell lines and ii) the fate of APP carboxyl-truncated fragments will be tested. 3. To determine the possible targets of the drugs. Effects of ChEIs on the i) APP-cleaving enzyme (BACE), ii) 5' -untranslated region and iii) inhibition of Abeta levels in transgenic mice model of AD. We will mechanically select ChEIs that interact with the peripheral allosteric binding domain of ChEenzyme, or with the esteractic and anionic binding domains (phenserine and cymserine) and test it in APP/PS1 double transgenic mice. These results will indicate a unique effect of ChEIs on APP processing, which is independent of their selectivity for the enzyme. This property will be further investigated to maximize their potential effects in decreasing amyloid depositions, and which can be utilized to design better drugs for the treatment of AD.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG018884-05
Application #
7038364
Study Section
Special Emphasis Panel (ZRG1-BDCN-1 (01))
Program Officer
Snyder, Stephen D
Project Start
2002-05-01
Project End
2008-04-30
Budget Start
2006-05-01
Budget End
2008-04-30
Support Year
5
Fiscal Year
2006
Total Cost
$282,267
Indirect Cost
Name
Indiana University-Purdue University at Indianapolis
Department
Psychiatry
Type
Schools of Medicine
DUNS #
603007902
City
Indianapolis
State
IN
Country
United States
Zip Code
46202
Kim, Eunhee; Woo, Moon-Sook; Qin, Luye et al. (2015) Daidzein Augments Cholesterol Homeostasis via ApoE to Promote Functional Recovery in Chronic Stroke. J Neurosci 35:15113-26
Long, Justin M; Ray, Balmiki; Lahiri, Debomoy K (2014) MicroRNA-339-5p down-regulates protein expression of ?-site amyloid precursor protein-cleaving enzyme 1 (BACE1) in human primary brain cultures and is reduced in brain tissue specimens of Alzheimer disease subjects. J Biol Chem 289:5184-98
Counts, Scott E; Lahiri, Debomoy K (2014) Overview of immunotherapy in Alzheimer's disease (AD) and mechanisms of IVIG neuroprotection in preclinical models of AD. Curr Alzheimer Res 11:623-5
Greig, Nigel H; Tweedie, David; Rachmany, Lital et al. (2014) Incretin mimetics as pharmacologic tools to elucidate and as a new drug strategy to treat traumatic brain injury. Alzheimers Dement 10:S62-75
Lahiri, Debomoy K; Maloney, Bryan; Long, Justin M et al. (2014) Lessons from a BACE1 inhibitor trial: off-site but not off base. Alzheimers Dement 10:S411-9
Campbell, Arezoo; Sharman, Edward; Bondy, Stephen C (2014) Age-related differences in the response of the brain to dietary melatonin. Age (Dordr) 36:49-55
Perez, Felipe P; Bose, David; Maloney, Bryan et al. (2014) Late-onset Alzheimer's disease, heating up and foxed by several proteins: pathomolecular effects of the aging process. J Alzheimers Dis 40:1-17
Reale, Marcella; Di Nicola, Marta; Velluto, Lucia et al. (2014) Selective acetyl- and butyrylcholinesterase inhibitors reduce amyloid-? ex vivo activation of peripheral chemo-cytokines from Alzheimer's disease subjects: exploring the cholinergic anti-inflammatory pathway. Curr Alzheimer Res 11:608-22
Yu, Qian-Sheng; Reale, Marcella; Kamal, Mohammad A et al. (2013) Synthesis of the Alzheimer drug Posiphen into its primary metabolic products (+)-N1-norPosiphen, (+)-N8-norPosiphen and (+)-N1, N8-bisnorPosiphen, their inhibition of amyloid precursor protein, ?-Synuclein synthesis, interleukin-1? release, and cholinergi Antiinflamm Antiallergy Agents Med Chem 12:117-28
Lahiri, Debomoy K; Maloney, Bryan; Rogers, Jack T et al. (2013) PuF, an antimetastatic and developmental signaling protein, interacts with the Alzheimer's amyloid-ýý precursor protein via a tissue-specific proximal regulatory element (PRE). BMC Genomics 14:68

Showing the most recent 10 out of 109 publications