BACE1 is the -secretase enzyme that initiates A production and is a prime therapeutic target for AD. Drugs that inhibit BACE1 enzyme activity are in clinical trials for AD, however the safety and efficacy of these agents are unknown. Recent studies suggest that BACE1 inhibition may cause multiple neurological side effects. Thus, it is crucial to develop alternative therapeutic strategies that reduce BACE1 cleavage of APP without impairing essential BACE1 functions. We have shown that global BACE1 protein levels are markedly elevated in APP transgenic mouse and AD brains. Elevated BACE1 is concentrated within dystrophic axons and terminals surrounding amyloid plaques and is associated with increased generation of BACE1- cleaved APP fragments and A42. We also find that A42 causes increased resting [Ca2+]i and microtubule disruption in neurons. We hypothesize a feed-forward mechanism in which plaque-associated A causes axonal dystrophy, BACE1 accumulation, and accelerated A generation that drives AD progression. Elucidating the molecular and cellular mechanisms of dystrophic BACE1 elevation could lead to novel AD therapeutic strategies to normalize BACE1 levels and reduce peri-plaque A production, yet preserve BACE1 activity for essential functions and side effect mitigation. We hypothesize that A-induced Ca2+ influx into peri-plaque axons causes microtubule disruption, impaired axon transport, BACE1 accumulation, axonal dystrophy, and accelerated A generation and amyloid load. Our preliminary data show that A elevates resting [Ca2+]i in primary neurons via Ca2+-selective channels. Moreover, axons of A-treated primary neurons exhibit disrupted microtubules and impaired BACE1 axon transport. Peri-plaque dystrophic axons in 5XFAD mice also show elevated resting [Ca2+]i and disrupted microtubules. Using Ca2+ channel inhibitors or shRNA-AAVs, we will identify the channel(s) that mediates A-induced Ca2+ influx in neurons in vitro and in vivo (Aim 1). Additionally, using Ca2+ channel inhibitors or shRNA-AAVs, we will decrease A-induced elevated resting [Ca2+]i, block microtubule and motor protein disruption, improve axon transport, and reduce BACE1 elevation (Aim 2). We will also rescue BACE1 elevation and axon transport by exposing A-treated primary neurons and 5XFAD mice to the microtubule stabilizing agent Epothilone D and determine whether A-induced BACE1 elevation is tau-independent (Aim 2). Finally, we will determine whether BACE1 elevation accelerates A generation and amyloid progression by performing 1) 35S-metabolic labeling of A-treated primary neurons to measure de novo A production, 2) in vivo A microdialysis to analyze A production in peri-plaque regions, 3) multicolor A time-stamp labeling to analyze the rate of individual plaque growth and dystrophic neurite formation in 5XFAD mice (Aim 3). These experiments will provide proof of concept for therapeutic strategies to reduce peri-plaque BACE1 elevation as a safer alternative to direct inhibition of BACE1 enzyme activity.

Public Health Relevance

BACE1 inhibitors are currently in clinical trials for Alzheimer's disease (AD), an intractable neurodegenerative disorder with no disease-modifying therapy, but the safety and efficacy of these agents are unknown. We have discovered that BACE1 levels are increased around amyloid plaques in AD brain, which could accelerate the progression of the disease. This application will determine the mechanism of the BACE1 increase and whether reducing it will slow the progression of the disease, thus providing proof of concept for AD therapeutic strategies to block the BACE1 increase in AD.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Project (R01)
Project #
Application #
Study Section
Cell Death in Neurodegeneration Study Section (CDIN)
Program Officer
Yang, Austin Jyan-Yu
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Northwestern University at Chicago
Schools of Medicine
United States
Zip Code
Sadleir, Katherine R; Popovic, Jelena; Vassar, Robert (2018) ER stress is not elevated in the 5XFAD mouse model of Alzheimer's disease. J Biol Chem 293:18434-18443
Liu, Peng; Reichl, John H; Rao, Eshaan R et al. (2017) Quantitative Comparison of Dense-Core Amyloid Plaque Accumulation in Amyloid-? Protein Precursor Transgenic Mice. J Alzheimers Dis 56:743-761
Rocchi, Altea; Yamamoto, Soh; Ting, Tabitha et al. (2017) A Becn1 mutation mediates hyperactive autophagic sequestration of amyloid oligomers and improved cognition in Alzheimer's disease. PLoS Genet 13:e1006962
Sasaguri, Hiroki; Nilsson, Per; Hashimoto, Shoko et al. (2017) APP mouse models for Alzheimer's disease preclinical studies. EMBO J 36:2473-2487
Sadleir, Katherine R; Kandalepas, Patty C; Buggia-Prévot, Virginie et al. (2016) Presynaptic dystrophic neurites surrounding amyloid plaques are sites of microtubule disruption, BACE1 elevation, and increased A? generation in Alzheimer's disease. Acta Neuropathol 132:235-56
Yan, Riqiang; Fan, Qingyuan; Zhou, John et al. (2016) Inhibiting BACE1 to reverse synaptic dysfunctions in Alzheimer's disease. Neurosci Biobehav Rev 65:326-40
Sadleir, Katherine R; Eimer, William A; Cole, Sarah L et al. (2015) A? reduction in BACE1 heterozygous null 5XFAD mice is associated with transgenic APP level. Mol Neurodegener 10:1
Kukreja, Lokesh; Kujoth, Gregory C; Prolla, Tomas A et al. (2014) Increased mtDNA mutations with aging promotes amyloid accumulation and brain atrophy in the APP/Ld transgenic mouse model of Alzheimer's disease. Mol Neurodegener 9:16
Vassar, Robert; Kuhn, Peer-Hendrik; Haass, Christian et al. (2014) Function, therapeutic potential and cell biology of BACE proteases: current status and future prospects. J Neurochem 130:4-28
Yan, Riqiang; Vassar, Robert (2014) Targeting the ? secretase BACE1 for Alzheimer's disease therapy. Lancet Neurol 13:319-29

Showing the most recent 10 out of 24 publications