Delirium complicates 15-53% of major surgery in older adults, resulting in 2-20 fold increased mortality, long term cognitive and functional impairment, and increased healthcare costs. Yet, delirium remains a wholly clinical diagnosis; its pathophysiology remains largely unknown, with no biomarkers to guide its diagnosis or management. Over the past 4.5 years, we conducted the Biomarker Discovery for Delirium project within a National Institute on Aging (NIA) program project that funded the SAGES (Successful Aging after Elective Surgery) study. Using the SAGES plasma biorepository and state-of-the-art approaches, including proteomics, we found that pro-inflammatory cytokines, acute phase reactants, and neuronal injury markers are consistently elevated in delirious patients relative to matched controls. These results support a model for delirium in which a predisposing, systemic pre-inflammatory state results in a dysfunctional response to a stressor (major surgery), leading to blood brain barrier breakdown, microglial activation, neuro-inflammation, neuronal injury and death. Responding to NIA Program Announcement PA-13-168 Secondary analysis of existing data sets and stored biospecimens to address clinical aging research questions, we now propose a new set of Specific Aims with no scientific or budgetary overlap with our P01-funded project. We will leverage specimens from SAGES, and an independent orthopedic cohort, HiPOR (Healthier Postoperative Recovery) that collected and stored both plasma and preoperative cerebrospinal fluid (CSF). We will apply cutting edge systems level Omics methods to define delirium signatures that integrate proteins, lipids, and metabolites from both plasma and CSF. We will seek to confirm and further elucidate the dysfunctional inflammation pathophysiological model described above, and probe additional mechanisms for delirium that might interact with, or be independent of the above pathways. In this context, we propose the following Specific Aims:
Aim 1 : Define and validate a plasma protein signature for delirium Aim 2: Define plasma lipid and metabolite delirium signatures, integrate with the protein signature, and validate this integrated signature across the SAGES cohort and in the independent HiPOR sample Aim 3: Define an integrated CSF-based protein, lipid, and metabolite signature for delirium. Impact: Our immediate goals are to develop integrated (protein, metabolite, lipid) plasma and CSF-based biomarker signatures for delirium using banked specimens from two cohort studies of older orthopedic patients. We will further elucidate the inflammatory pathway described above and uncover others through the proposed Aims, which will fundamentally advance our knowledge of the pathophysiology of delirium. Ultimately, our goal is to translate our findings to the bedside through improved methods of diagnosis and monitoring of delirium, and though the design of targeted, pathophysiologically based interventions. Therefore, the long term impact of the proposed work will be to transform clinical management of this common, morbid, and costly syndrome.

Public Health Relevance

Up to half of older surgery patients experience delirium (acute confusion), which results in increased mortality, functional dependence, and cognitive decline. The annual U.S. costs of delirium exceed $150 billion. We will apply state-of-the-art biological analysis (Omics) of blood and cerebrospinal fluid samples from 2 previously conducted studies of older orthopedic patients to understand how patients who develop delirium differ from those who do not. By better understanding the biological pathways and markers of delirium, we will be able to design improved strategies to prevent, diagnose, and treat this common, morbid, and costly syndrome.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG051658-02
Application #
9204773
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Roberts, Luci
Project Start
2016-01-15
Project End
2019-12-31
Budget Start
2017-01-01
Budget End
2017-12-31
Support Year
2
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Beth Israel Deaconess Medical Center
Department
Type
DUNS #
071723621
City
Boston
State
MA
Country
United States
Zip Code
02215
Vasunilashorn, Sarinnapha M; Ngo, Long H; Chan, Noel Y et al. (2018) Development of a Dynamic Multi-Protein Signature of Postoperative Delirium. J Gerontol A Biol Sci Med Sci :
O'Gara, Brian; Marcantonio, Edward R; Pascual-Leone, Alvaro et al. (2018) Prevention of Early Postoperative Decline (PEaPoD): protocol for a randomized, controlled feasibility trial. Trials 19:676
Racine, Annie M; Fong, Tamara G; Gou, Yun et al. (2018) Clinical outcomes in older surgical patients with mild cognitive impairment. Alzheimers Dement 14:590-600
Vasunilashorn, Sarinnapha M; Fong, Tamara G; Albuquerque, Asha et al. (2018) Delirium Severity Post-Surgery and its Relationship with Long-Term Cognitive Decline in a Cohort of Patients without Dementia. J Alzheimers Dis 61:347-358
Kim, Dae Hyun; Mahesri, Mufaddal; Bateman, Brian T et al. (2018) Longitudinal Trends and Variation in Antipsychotic Use in Older Adults After Cardiac Surgery. J Am Geriatr Soc 66:1491-1498
Miao, Huihui; Dong, Yuanlin; Zhang, Yiying et al. (2018) Anesthetic Isoflurane or Desflurane Plus Surgery Differently Affects Cognitive Function in Alzheimer's Disease Transgenic Mice. Mol Neurobiol 55:5623-5638
Hshieh, Tammy T; Fong, Tamara G; Schmitt, Eva M et al. (2018) The Better Assessment of Illness Study for Delirium Severity: Study Design, Procedures, and Cohort Description. Gerontology :1-10
Ngo, Long H; Inouye, Sharon K; Jones, Richard N et al. (2017) Methodologic considerations in the design and analysis of nested case-control studies: association between cytokines and postoperative delirium. BMC Med Res Methodol 17:88
Vasunilashorn, Sarinnapha M; Dillon, Simon T; Inouye, Sharon K et al. (2017) High C-Reactive Protein Predicts Delirium Incidence, Duration, and Feature Severity After Major Noncardiac Surgery. J Am Geriatr Soc 65:e109-e116
Cizginer, Sevdenur; Marcantonio, Edward; Vasunilashorn, Sarinnapha et al. (2017) The Cognitive Reserve Model in the Development of Delirium: The Successful Aging After Elective Surgery Study. J Geriatr Psychiatry Neurol 30:337-345

Showing the most recent 10 out of 16 publications