Late-onset Alzheimer's dementia (LOAD) is terminal and the most prevalent form of dementia (70% of cases). LOAD is a major public health burden in the US with current prevalence estimates of 4 to 5 million adults and economic costs exceeding $236 billion annually. Important disparities in LOAD prevalence occur with sex, race/ethnicity, education, and residence. The biological bases of these health disparities are incompletely characterized and their influences on LOAD are likely to be multifactorial. Thus, studies with sufficient sample sizes, concurrently assessing multiple characteristics, such as educational attainment, environment, social, behavioral, lifestyle, geographic, and genetics, will be uniquely positioned to effectively test factors or combinations of factors that create and sustain LOAD disparities. Our goal is to determine the joint genetic and environmental contributions to LOAD risk that underlie these health disparities. Using existing genomics data, well-characterized dementia phenotypes, and diverse risk factor data, we will analyze up to 16,000 aging participants in the Health and Retirement Study (HRS), attempt clinical confirmation in participants of the Aging, Demographics, and Memory Study (ADAMS) sub-cohort of the HRS, and test replication in other clinical and population-based samples.
Our aims are to (1) determine the cumulative genetic risk of LOAD by testing the association between cognitive polygenic scores and risk of dementia phenotype in European and African ancestries; (2) determine the polygenic effect of LOAD risk covariates from behavioral, physiological, and psychosocial domains on dementia phenotypes in European and African ancestries; and (3) test for effect modification of the association between polygenic risk and dementia phenotype in European and African ancestries by health disparities factors (sex, education, urban/rural residence). This study will likely impact the field of Alzheimer's research and contribute to public health because it will a) establish the relevance of cumulative genetic risk on LOAD in susceptible populations where genetics may be a more relevant factor; b) elucidate important biological mechanisms through polygenic scores; c) determine the combined and individual gene-environment contribution to LOAD risk; d) generate unified polygenic scores and dementia phenotypes across major longitudinal cohorts involving diverse populations that can be used in future investigations of health outcomes and/or additional exposure domains; e) consider the effects of sex, educational attainment, ancestry, and urban/rural status in the same study where comparisons of relative contribution to risk can be made. We have the opportunity to simultaneously and significantly improve our understanding of the genetic and environmental etiologic contributions to health disparities in LOAD.

Public Health Relevance

The overall purpose of this proposal is to establish the relevance of polygenic risk in susceptibility to dementia, particularly among groups at increased risk of disease, including women, minorities, rural inhabitants, and those with low educational attainment. Because an individual's susceptibility to dementia is likely a combination of genetics and environmental risk factors, we will jointly test the effects of cumulative genetic risk and dementia risk factors in our analysis. The proposal provides an opportunity to identify a genetic etiologic component in vulnerable groups that could lead to mechanistic understanding or targeted interventions to substantially benefit public health in the US.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG055406-02
Application #
9565376
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
King, Jonathan W
Project Start
2017-09-15
Project End
2021-05-31
Budget Start
2018-07-15
Budget End
2019-05-31
Support Year
2
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Miscellaneous
Type
Organized Research Units
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Dou, John; Schmidt, Rebecca J; Benke, Kelly S et al. (2018) Cord blood buffy coat DNA methylation is comparable to whole cord blood methylation. Epigenetics 13:108-116