A critical roadblock in the development of an HIV-1 vaccine is our current inability to deliver HIV-1 antigens efficiently to the immune system and to prime predictable, high frequency immune responses in humans. Recombinant, replication-incompetent adenovirus serotype 5 (rAd5) vector-based vaccines for HIV-1 have elicited potent immune responses in preclinical studies. However, the high frequency of anti-Ad5 immunity in the developing world will likely limit the immunogenicity and clinical utility of rAd5 vaccines. We therefore propose the development of novel rAd vector-based vaccines for HIV-1. ? ? We hypothesize that rAd vector-based vaccines derived from rare Ad serotypes and engineered for improved immunogenicity will prove significantly more immunogenic than rAd5 vaccines in rhesus monkeys with anti-Ad5 immunity. We further hypothesize that the optimal rAd vaccine regimen will be a heterologous prime-boost regimen involving two different serotype vectors that are both rare in human populations, engineered for optimal immunogenicity, derived from different Ad subfamilies, and distinct from Ad5. ? ? To investigate these hypotheses, we propose the following four Specific Aims: ? 1. To compare the immunogenicity of rAd5, rAd35, and capsid chimeric rAd5/rAd35 vectors in rhesus monkeys with anti-Ad5 immunity; ? 2. To assess the immunogenicity of heterologous rAd prime-boost regimens involving vectors derived from two different Ad subfamilies in mice; ? 3. To assess the immunogenicity and protective efficacy of the optimal heterologous rAd prime-boost regimen against an SIVmac251 challenge in rhesus monkeys with and without anti-Ad5 immunity; and 4. To determine the immunogenicity and protective efficacy of the optimal heterologous rAd prime- boost regimen delivered by either systemic or mucosal routes against repetitive, low-dose, mucosal SIVmac251 challenges in rhesus monkeys with anti-Ad5 immunity. ? ? The overall goal of these studies is to develop a novel heterologous rAd prime-boost regimen for HIV-1 that is highly immunogenic in the presence of anti-Ad5 immunity and that can be advanced rapidly into clinical vaccine trials in the developing world. ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
1R01AI066924-01A1
Application #
7061430
Study Section
Special Emphasis Panel (ZRG1-VACC (01))
Program Officer
Miller, Nancy R
Project Start
2005-12-15
Project End
2010-11-30
Budget Start
2005-12-15
Budget End
2006-11-30
Support Year
1
Fiscal Year
2006
Total Cost
$610,684
Indirect Cost
Name
Beth Israel Deaconess Medical Center
Department
Type
DUNS #
071723621
City
Boston
State
MA
Country
United States
Zip Code
02215
Yusim, Karina; Dilan, Rebecca; Borducchi, Erica et al. (2013) Hepatitis C genotype 1 mosaic vaccines are immunogenic in mice and induce stronger T-cell responses than natural strains. Clin Vaccine Immunol 20:302-5
Penaloza-MacMaster, Pablo; Provine, Nicholas M; Ra, Joshua et al. (2013) Alternative serotype adenovirus vaccine vectors elicit memory T cells with enhanced anamnestic capacity compared to Ad5 vectors. J Virol 87:1373-84
Barouch, Dan H; Liu, Jinyan; Peter, Lauren et al. (2013) Characterization of humoral and cellular immune responses elicited by a recombinant adenovirus serotype 26 HIV-1 Env vaccine in healthy adults (IPCAVD 001). J Infect Dis 207:248-56
Tan, Wendy G; Jin, Hyun-Tak; West, Erin E et al. (2013) Comparative analysis of simian immunodeficiency virus gag-specific effector and memory CD8+ T cells induced by different adenovirus vectors. J Virol 87:1359-72
Li, Hualin; Rhee, Elizabeth G; Masek-Hammerman, Katherine et al. (2012) Adenovirus serotype 26 utilizes CD46 as a primary cellular receptor and only transiently activates T lymphocytes following vaccination of rhesus monkeys. J Virol 86:10862-5
Handley, Scott A; Thackray, Larissa B; Zhao, Guoyan et al. (2012) Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome. Cell 151:253-66
Bradley, Ritu R; Maxfield, Lori F; Lynch, Diana M et al. (2012) Adenovirus serotype 5-specific neutralizing antibodies target multiple hexon hypervariable regions. J Virol 86:1267-72
Bradley, Ritu R; Lynch, Diana M; Iampietro, Mark J et al. (2012) Adenovirus serotype 5 neutralizing antibodies target both hexon and fiber following vaccination and natural infection. J Virol 86:625-9
Barouch, Dan H; Liu, Jinyan; Li, Hualin et al. (2012) Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys. Nature 482:89-93
Kaufman, David R; Li, Fusheng; Cruz, Ashley N et al. (2012) Focus and breadth of cellular immune responses elicited by a heterologous insert prime-boost vaccine regimen in rhesus monkeys. Vaccine 30:506-9

Showing the most recent 10 out of 41 publications