Hepatitis E virus (HEV), the causative agent of human hepatitis E, is an important public health problem in developing countries, and is also endemic in the United States and other industrialized countries. The mortality rate associated with HEV infection is up to 28% in pregnant women. Due to the lack of a cell culture and a practical animal model system, the mechanisms of HEV replication and pathogenesis are poorly understood and a vaccine against hepatitis E is still not available. Our recent discoveries of swine and avian hepatitis E viruses from pigs and chickens and the demonstrated abilities of cross-species infections by the animal HEV strains have opened up new avenues for HEV research. Hepatitis E now is a recognized zoonotic disease, and pigs (and maybe other animal species) are known reservoirs. This proposal is based on our recent discoveries of swine and avian HEVs, establishment of pig and chicken models for HEV, construction of infectious cDNA clones of human, swine and avian HEVs, and identification of cell lines supporting HEV replication resulting from two prior NIH awards on HEV (AI01653, AI46505) which have now expired. The PI decided not to submit competing renewals so that he can combine the directions of the expired awards and expand the scope of his HEV research by submitting a single new proposal. The long-term objectives are to understand the mechanisms of HEV replication, pathogenesis and cross-species infection by using pigs, chickens and non-human primates as models, and by using avian-swine, avian-human and swine-human HEV chimeras to identify genomic regions that are functionally important for these processes. In this proposal, we aim to: (1). Determining the role(s) of the hypervariable region (HVR) in HEV replication and pathogenesis;(2). Understand the molecular basis of HEV cross-species infection and host susceptibility;and (3). Fine-map the amino acid residue(s) on HEV capsid protein that are important for HEV attenuation. This will be accomplished by using standard techniques including cell cultures, molecular biology, and animal studies. The proposed studies will significantly advance our understanding of the mechanisms of HEV replication, pathogenesis and cross- species infection, and will provide useful information for future vaccine development.

Public Health Relevance

The lack of knowledge on HEV basic biology and pathogenesis has greatly hindered the development of a vaccine against HEV. The information gained from this project will help understand the mechanisms of HEV replication and pathogenesis, and help devise effective preventive and control strategies (such as a live-attenuated vaccine) against this important but extremely understudied human pathogen.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI074667-02
Application #
7575762
Study Section
Virology - B Study Section (VIRB)
Program Officer
Koshy, Rajen
Project Start
2008-03-01
Project End
2012-02-28
Budget Start
2009-03-01
Budget End
2010-02-28
Support Year
2
Fiscal Year
2009
Total Cost
$390,965
Indirect Cost
Name
Virginia Polytechnic Institute and State University
Department
Veterinary Sciences
Type
Schools of Veterinary Medicine
DUNS #
003137015
City
Blacksburg
State
VA
Country
United States
Zip Code
24061
Yugo, Danielle M; Cossaboom, Caitlin M; Heffron, Connie Lynn et al. (2018) Evidence for an unknown agent antigenically related to the hepatitis E virus in dairy cows in the United States. J Med Virol :
Yugo, Danielle M; Heffron, C Lynn; Ryu, Junghyun et al. (2018) Infection Dynamics of Hepatitis E Virus in Wild-Type and Immunoglobulin Heavy Chain Knockout JH-/- Gnotobiotic Piglets. J Virol 92:
Cao, Dianjun; Ni, Yan-Yan; Walker, Michelle et al. (2018) Roles of the genomic sequence surrounding the stem-loop structure in the junction region including the 3' terminus of open reading frame 1 in hepatitis E virus replication. J Med Virol 90:1524-1531
Cao, Dianjun; Ni, Yan-Yan; Meng, Xiang-Jin (2018) Substitution of amino acid residue V1213 in the helicase domain of the genotype 3 hepatitis E virus reduces virus replication. Virol J 15:32
Sooryanarain, Harini; Meng, Xiang-Jin (2018) Hepatitis E virus: reasons for emergence in humans. Curr Opin Virol 34:10-17
Sooryanarain, Harini; Rogers, Adam J; Cao, Dianjun et al. (2017) ISG15 Modulates Type I Interferon Signaling and the Antiviral Response during Hepatitis E Virus Replication. J Virol 91:
Cao, Dianjun; Cao, Qian M; Subramaniam, Sakthivel et al. (2017) Pig model mimicking chronic hepatitis E virus infection in immunocompromised patients to assess immune correlates during chronicity. Proc Natl Acad Sci U S A 114:6914-6923
Yugo, Danielle M; Hauck, Ruediger; Shivaprasad, H L et al. (2016) Hepatitis Virus Infections in Poultry. Avian Dis 60:576-88
Cossaboom, Caitlin M; Heffron, Connie L; Cao, Dianjun et al. (2016) Risk factors and sources of foodborne hepatitis E virus infection in the United States. J Med Virol 88:1641-5
Kenney, Scott P; Wentworth, Jacquelyn L; Heffron, Connie L et al. (2015) Replacement of the hepatitis E virus ORF3 protein PxxP motif with heterologous late domain motifs affects virus release via interaction with TSG101. Virology 486:198-208

Showing the most recent 10 out of 39 publications