Numerous microRNA (miRNA), a class of short regulatory non-coding RNAs known for their role in organ development, cellular differentiation, homeostasis, and function, have been recently demonstrated to be pivotal in regulating immune responses. We have previously shown an indispensable role of the miRNA pathway in controlling regulatory T (Treg) cell homeostasis and function. Among miRNAs highly expressed in Treg cells, miR-155 and miR-146a play pivotal roles in maintaining normal Treg cell homeostasis and more importantly regulating their suppressor function to Th1 inflammation, respectively. Nonetheless, because the complexity and the severity of the disease phenotypes in mice harboring Treg cells devoid of miRNA cannot be attributed entirely to the loss of aforementioned individual miRNAs, additional miRNAs essential for controlling other features of Treg cell biology require further elucidation. Like miR-155 and miR-146a described above, miR-23 clusters were found to be highly upregulated in Treg cells at least partially in a Foxp3 dependent manner. Moreover, the differences in the expression of miR-23 clusters between Treg cells and Tcon cells became even larger upon activation as they were further upregulated in Treg cells while downregulated in Tcon cells. Here, we propose a multifaceted study employing genetic, biochemical, immunological approaches and whole animal experimentation to comprehensively examine the molecular and cellular mechanisms underlying miR-23 cluster-mediated immune regulation. First, by generating mice harboring conditional alleles of miR-23 clusters, this loss-of-function approach will allow us to examine the role of miR-23 clusters in regulating Treg cell-mediated immunological tolerance in both physiological and autoimmune settings. Next, the immediate availability of mice harboring conditional over-expressing transgenes of the whole miR-23a cluster as well as individual miRNA member within the cluster will afford the opportunity to systematically examine the role of miR-23 cluster in controlling T cell immunity in various settings. Finally, we will explore the putative molecular mechanisms underlying miR-23 cluster-dependent immune regulation through identification of genes that are regulated in miR-23 cluster-dependent manner and through identification of targets that are directly controlled by miR-23 clusters. The proposed studies will greatly extend our fundamental knowledge of miRNA-mediated immune regulation and provide further insights into the development of strategies to manipulate Treg cell and effector T cell function as novel therapeutic approaches for treating human immunological diseases.

Public Health Relevance

The proposed studies aim to facilitate basic understanding of the role of one important miRNA family in controlling the balance between immunity and tolerance and to explore the biological significance of such miRNA-mediated regulation in the context of autoimmunity. The results obtained from these studies will provide critical insights int manipulating miRNA-dependent immune regulation as a novel therapeutic approach for not only autoimmunity but also many other immunological human diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI108651-05
Application #
9457304
Study Section
Transplantation, Tolerance, and Tumor Immunology Study Section (TTT)
Program Officer
Ramachandra, Lakshmi
Project Start
2014-04-01
Project End
2019-03-31
Budget Start
2018-04-01
Budget End
2019-03-31
Support Year
5
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of California, San Diego
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Mann, Mati; Mehta, Arnav; Zhao, Jimmy L et al. (2018) Author Correction: An NF-?B-microRNA regulatory network tunes macrophage inflammatory responses. Nat Commun 9:3338
Cho, Sunglim; Lee, Hyang-Mi; Yu, I-Shing et al. (2018) Differential cell-intrinsic regulations of germinal center B and T cells by miR-146a and miR-146b. Nat Commun 9:2757
Becher, Burkhard; Waisman, Ari; Lu, Li-Fan (2018) Conditional Gene-Targeting in Mice: Problems and Solutions. Immunity 48:835-836
Liao, Hsin-Kai; Hatanaka, Fumiyuki; Araoka, Toshikazu et al. (2017) In Vivo Target Gene Activation via CRISPR/Cas9-Mediated Trans-epigenetic Modulation. Cell 171:1495-1507.e15
Wu, Min-Zu; Cheng, Wei-Chung; Chen, Su-Feng et al. (2017) miR-25/93 mediates hypoxia-induced immunosuppression by repressing cGAS. Nat Cell Biol 19:1286-1296
Cho, Sunglim; Wu, Cheng-Jang; Nguyen, Duc T et al. (2017) A Novel miR-24-TCF1 Axis in Modulating Effector T Cell Responses. J Immunol 198:3919-3926
Wu, Cheng-Jang; Lu, Li-Fan (2017) MicroRNA in Immune Regulation. Curr Top Microbiol Immunol 410:249-267
Glatman Zaretsky, Arielle; Konradt, Christoph; Dépis, Fabien et al. (2017) T Regulatory Cells Support Plasma Cell Populations in the Bone Marrow. Cell Rep 18:1906-1916
Cruz, Leilani O; Hashemifar, Somaye Sadat; Wu, Cheng-Jang et al. (2017) Excessive expression of miR-27 impairs Treg-mediated immunological tolerance. J Clin Invest 127:530-542
Cho, Sunglim; Wu, Cheng-Jang; Yasuda, Tomoharu et al. (2016) miR-23?27?24 clusters control effector T cell differentiation and function. J Exp Med 213:235-49

Showing the most recent 10 out of 15 publications