Human mmunodeficiency virus type 1 (HIV-1) causes the acquired immunodeficiency syndrome (AIDS). The lack of an HIV-1 vaccine, multi-drug resistance and complications from (and cost of) treatment emphasize a continuing need to identify new virus-host interfaces with the potential for targeting with antiviral strategies. We recently identified a species-specific attribute of the cellular CRM1 nuclear export receptor that suppresses the nucleocytoplasmic transport of HIV-1's intron-containing mRNAs (including gRNAs) in murine cells. CRM1 is remarkably well conserved among vertebrates and regulates the nuclear export of a broad range of cellular and viral proteins encoding hydrophobic peptides known as nuclear export signals (NESs). The HIV-1 Rev protein encodes a leucine-rich NES and recruits CRM1 to viral mRNAs that encode the cis- acting Rev response element (RRE) in order to facilitate their nuclear export. That CRM1's activities are species limited in the context of Rev leads to important questions regarding CRM1's protein evolution and cell- specific modes of action. First, what is human CRM1 (hCRM1) doing that murine CRM1 (mCRM1) is not? We have mapped the hCRM1 species-specific determinant that regulates Rev activity.
In Aim 1 we will study the role of this determinant in Rev/gRNA complex formation and determine if the mCRM1 block to HIV-1 Rev function can be made manifest in human cells. Second, why is HIV-1 Rev adapted to preferentially exploit hCRM1? In Aim 2, we will characterize newly identified HIV-1 Rev and gRNA mutants that rescue virion production in murine cells in the absence of hCRM1, and test if hCRM1 or these viral mutants can provide for active HIV-1 replication in murine cell culture. Finally, in Aim 3 we will establish a systems- based live cell imaging strategy to study how perturbations affecting HIV-1 gRNA nuclear export can influence the downstream stages of gRNA trafficking, Gag translation, gRNA packaging and efficient virus particle assembly.

Public Health Relevance

Human immunodeficiency virus type 1 (HIV-1) infects more than 34 million people worldwide and causes ~2 million deaths each year. Treatments that perturb the late, productive stages of HIV-1 infection are lacking in large part due a lack of knowledge regarding the cellular factors and pathways that regulate these phases. In this application we propose to exploit murine-specific blocks that profoundly suppress HIV-1 mRNA nucleocytoplasmic transport, the translation of structural proteins and the efficiency of virus particle assembly to gain new insight into the regulation of HIV-1's post- transcriptional phases in human cells. These studies have relevance to the identification of new antiviral targets, better understanding of cell- and species-specific blocks to infection and the development of new cellular imaging strategies for studying HIV-1 infection.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Research Project (R01)
Project #
5R01AI110221-02
Application #
8791880
Study Section
AIDS Molecular and Cellular Biology Study Section (AMCB)
Program Officer
Lawrence, Diane M
Project Start
2014-01-15
Project End
2018-12-31
Budget Start
2015-01-01
Budget End
2015-12-31
Support Year
2
Fiscal Year
2015
Total Cost
$330,545
Indirect Cost
$105,545
Name
University of Wisconsin Madison
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Sharma, Akshat; Lawry, Stephanie M; Klein, Bruce S et al. (2018) LFA-1 Ligation by High-Density ICAM-1 Is Sufficient To Activate IFN-? Release by Innate T Lymphocytes. J Immunol 201:2452-2461
Evans 3rd, Edward L; Becker, Jordan T; Fricke, Stephanie L et al. (2018) HIV-1 Vif's Capacity To Manipulate the Cell Cycle Is Species Specific. J Virol 92:
Behrens, Ryan T; Aligeti, Mounavya; Pocock, Ginger M et al. (2017) Nuclear Export Signal Masking Regulates HIV-1 Rev Trafficking and Viral RNA Nuclear Export. J Virol 91:
Knoener, Rachel A; Becker, Jordan T; Scalf, Mark et al. (2017) Elucidating the in vivo interactome of HIV-1 RNA by hybridization capture and mass spectrometry. Sci Rep 7:16965
Becker, Jordan T; Sherer, Nathan M (2017) Subcellular Localization of HIV-1 gag-pol mRNAs Regulates Sites of Virion Assembly. J Virol 91:
Watters, Kelly; Inankur, Bahar; Gardiner, Jaye C et al. (2017) Differential Disruption of Nucleocytoplasmic Trafficking Pathways by Rhinovirus 2A Proteases. J Virol 91:
Pocock, Ginger M; Zimdars, Laraine L; Yuan, Ming et al. (2017) Diverse activities of viral cis-acting RNA regulatory elements revealed using multicolor, long-term, single-cell imaging. Mol Biol Cell 28:476-487
Pocock, Ginger M; Becker, Jordan T; Swanson, Chad M et al. (2016) HIV-1 and M-PMV RNA Nuclear Export Elements Program Viral Genomes for Distinct Cytoplasmic Trafficking Behaviors. PLoS Pathog 12:e1005565
Garcia-Miranda, Pablo; Becker, Jordan T; Benner, Bayleigh E et al. (2016) Stability of HIV Frameshift Site RNA Correlates with Frameshift Efficiency and Decreased Virus Infectivity. J Virol 90:6906-6917
Hilimire, Thomas A; Bennett, Ryan P; Stewart, Ryan A et al. (2016) N-Methylation as a Strategy for Enhancing the Affinity and Selectivity of RNA-binding Peptides: Application to the HIV-1 Frameshift-Stimulating RNA. ACS Chem Biol 11:88-94

Showing the most recent 10 out of 14 publications