The focus of this proposal is to develop new strategies to promote the growth of mature microvascular networks by therapeutic induction of arteriogenesis. Arteriogenesis is the process by which new arterioles form and existing arterioles structurally enlarge, effectively increasing the number and diameter of resistance microvessels that are critical to the preservation of tissues after surgical transplantation or ischemic injury. Preliminary studies show that sustained delivery of sphingosine-1-phosphate (S1P) from biodegradable polymers significantly enhances lumenal diameter enlargement of arterioles in vivo;one is one hallmark of arteriogenesis. S1P is a pleiotropic autocrine and paracrine signaling small molecule that regulates the behavior of endothelial cells (ECs) and smooth muscle cells (SMCs) through a family of high-affinity G protein- coupled receptors (S1P1, S1P2, S1P3). The motivation for the proposed activities stems from exciting new advances in the synthesis of pharmacological agonists and antagonists of S1P receptors. Recently, we demonstrated that in vivo delivery of selective pharmacological agonists of S1P1 significantly increases arteriolar diameter enlargement and vessel maintenance over S1P itself. The results of S1P1-induced arteriogenesis suggest exciting new possibilities for locally delivering S1P receptor targeted drugs to improve healing outcomes in tissue engineering and regenerative medicine. To this end, exploratory experiments now demonstrate that implantation of biodegradable three-dimensional (3D) scaffolds delivering S1P1 selective compounds to critical size calvarial bone defects significantly increases osseous tissue ingrowth and the proportion of SMC-invested microvessels in boney repair tissues.
AIM 1 will quantify local regulation of SMC proliferation and lumenal diameter enlargement in microvascular networks in vivo via the sustained release of S1P from synthetic biodegradable polymers.
AIM 2 tests the hypothesis that S1P-induced arteriolar diameter enlargement requires activation of S1P1 in SMCs.
AIM 3 tests the hypothesis that S1P1-induced regulation of microvessel remodeling will enhance bone healing outcomes.
The replacement or restoration of function to traumatized, damaged, or lost organs and tissues is an increasingly significant clinical problem. It is estimated that only 24,422 received organ transplants of a possible 79,512 patients on the transplantation wait list in 2002. In addition, it is currently estimated that over 1.5 million musculoskeletal injuries alone will require tissue graft reconstruction in the US each year, and these numbers will continue to grow as the life expectancy of the population increases. Thus, the development of effective strategies to vascularize new tissue engineering organ and tissues to sustain their viability in vivo is a significant medical need.
Showing the most recent 10 out of 35 publications