Although colorectal cancer is the second leading cause of cancer deaths for men and women in the United States, it would be largely preventable if its precursor lesions were detected and removed early. Most colorectal cancers develop from sessile or pedunculated polypoid neoplasms. Early removal of such neoplasms has been observed to reduce the occurrence of colorectal carcinoma. Computed tomographic colonography (CTC), or virtual colonoscopy, has become an alternative technique for providing mass screening for colorectal carcinoma due to recent large-scale, multi-center clinical trials, including the National CT Colonography Trial. However, for CTC to be truly deployed for the 70 million people eligible for screening in the U.S., it should be easy for the patients to tolerate, and should have high accuracy in detecting polyps. One of the difficulties with total colon examination, including CTC, is low patient adherence to the rigorous cathartic bowel cleansing that is used for bowel preparation prior to the examination. Laxative-free CTC (lfCTC) is an emerging technique for eliminating rigorous cathartic cleansing from the bowel preparation used in current CTC. Although promising, anticipated difficulties with lfCTC include a large amount of solid residual fecal material present in the colon, and variations in diagnostic performance among readers who interpret lfCTC images because of the distracting residual solid stool in detecting small polyps as well as flat lesions. For addressing these difficulties, the short-term goal in this project is to develop an lfCTC interpretation system that assists radiologists in detecting colorectal lesions (polyps and flat lesions) quickly and accurately. This proposal aims at developing two components in the lfCTC interpretation (1) A high-performance laxative-free computer-aided detection (lfCAD) scheme, which automatically and accurately detects polyps and flat lesions in lfCTC images;and (2) A laxative-free electronic cleansing (lfEC) scheme, which virtually cleanses the solid residual stool without prior physical bowel cleansing. Both schemes will be designed and optimized for lfCTC images. system: We hypothesize that the lfCTC interpretation (Aim 1) Establish lfCTC databases to develop and evaluate lfCAD and lfEC schemes;
(Aim 2) Develop an lfCAD scheme for detection of colorectal lesions in lfCTC;
(Aim 3) Develop an advanced lfEC scheme for artifact-free removal of the solid residual stool in lfCTC;
(Aim 4) Evaluate the clinical benefit of an integrated lfCTC system will create diagnostic quality CTC images, yield clinically acceptable high detection performance of lesions, and improve radiologists'performance in the detection of colorectal lesions in lfCTC images. To explore these hypotheses, we propose the following specific aims: interpretation Successful development of the proposed lfCTC system. interpretation system will substantially advance the clinical implementation of image-based colon cancer screening in a large population, lead to an increased screening rate, promote the early diagnosis of colon cancer, and ultimately reduce the mortality due to colon cancer.

Public Health Relevance

The significance of this proposal is that successful development of the lfCTC interpretation system will substantially improve radiologists? performance and reduce their inter-observer variability in the detection of colonic lesions in lfCTC. Such a CAD system will make lfCTC a viable option for screening of large population, lead to an increased screening rate, promote the early diagnosis of colon cancer, and ultimately reduce the mortality due to colon cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA095279-08
Application #
8068242
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Zhang, Yantian
Project Start
2002-04-01
Project End
2014-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
8
Fiscal Year
2011
Total Cost
$373,082
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Nagata, Koichi; Endo, Shungo; Honda, Tetsuro et al. (2017) Accuracy of CT Colonography for Detection of Polypoid and Nonpolypoid Neoplasia by Gastroenterologists and Radiologists: A Nationwide Multicenter Study in Japan. Am J Gastroenterol 112:163-171
Tachibana, Rie; Näppi, Janne J; Kim, Se Hyung et al. (2015) Electronic cleansing for dual-energy CT colonography based on material decomposition and virtual monochromatic imaging. Proc SPIE Int Soc Opt Eng 9414:94140Q
Näppi, Janne J; Regge, Daniele; Yoshida, Hiroyuki (2015) Context-specific method for detection of soft-tissue lesions in non-cathartic low-dose dual-energy CT colonography. Proc SPIE Int Soc Opt Eng 9414:94142Y
Tachibana, Rie; Näppi, Janne J; Yoshida, Hiroyuki (2014) Application of Pseudo-enhancement Correction to Virtual Monochromatic CT Colonography. Abdom Imaging (2014) 8676:169-178
Näppi, Janne J; Tachibana, Rie; Regge, Daniele et al. (2014) Information-Preserving Pseudo-Enhancement Correction for Non-Cathartic Low-Dose Dual-Energy CT Colonography. Abdom Imaging (2014) 8676:159-168
Näppi, Janne J; Do, Synho; Yoshida, Hiroyuki (2013) Computer-Aided Detection of Colorectal Lesions with Super-Resolution CT Colonography: Pilot Evaluation. Abdom Imaging (2013) 8198:73-80
Cai, Wenli; Zhang, Da; Lee, June-Goo et al. (2013) Dual-energy index value of luminal air in fecal-tagging computed tomography colonography: findings and impact on electronic cleansing. J Comput Assist Tomogr 37:183-94
Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli et al. (2012) Scalable, high-performance 3D imaging software platform: system architecture and application to virtual colonoscopy. Conf Proc IEEE Eng Med Biol Soc 2012:3994-7
Näppi, Janne J; Kim, Se Hyung; Yoshida, Hiroyuki (2012) Volumetric detection of colorectal lesions for noncathartic dual-energy computed tomographic colonography. Conf Proc IEEE Eng Med Biol Soc 2012:3740-3
Zalis, Michael E; Blake, Michael A; Cai, Wenli et al. (2012) Diagnostic accuracy of laxative-free computed tomographic colonography for detection of adenomatous polyps in asymptomatic adults: a prospective evaluation. Ann Intern Med 156:692-702

Showing the most recent 10 out of 21 publications